- 注册时间
- 2017-1-14
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 9328
- 在线时间
- 小时
|
楼主 |
发表于 2023-11-9 11:38:44
|
显示全部楼层
将4,5,6,…,n排成数列{a(k):k=1,2,3,4,5,…,n-3},使a(k)都是k的倍数,有几种排法?
把题目分成6k+1, 6k+2, 6k+3, 6k+4, 6k+4, 6k+5, 6k+6 7部分。
6k+1: Table[b[n_] := If[n < 3, 1, b /@ Most@Divisors[n] // Total]; s = {b[(6 k - 1)/1], b[(6 k + 0)/3], b[(6 k + 1)/2]}; {s, Times @@ s}, {k, 1, 12}]
6k+2: Table[b[n_] := If[n < 3, 1, b /@ Most@Divisors[n] // Total]; s = {b[(6 k + 0)/3], b[(6 k + 1)/1], b[(6 k + 2)/2]}; {s, Times @@ s}, {k, 1, 12}]
{{{1, 1, 2}, 02}, {{2, 1, 1}, 02}, {{3, 1, 3}, 09}, {{4, 2, 1}, 08}, {{3, 1, 8}, 24}, {{8, 1, 1}, 08}, {{3, 1, 3}, 09}, {{8, 2, 2}, 32}, {{8, 3, 8}, 192}, {{8, 1, 1}, 8}, {{3, 1, 3}, 9}, {{20, 1, 1}, 20}}
6k+3: Table[b[n_] := If[n < 3, 1, b /@ Most@Divisors[n] // Total]; s = {b[(6 k + 1)/1], b[(6 k + 2)/2], b[(6 k + 3)/3]}; {s, Times @@ s}, {k, 1, 12}]
{{{1, 2, 1}, 02}, {{1, 1, 1}, 01}, {{1, 3, 1}, 03}, {{2, 1, 2}, 04}, {{1, 8, 1}, 08}, {{1, 1, 1}, 01}, {{1, 3, 3}, 09}, {{2, 2, 1}, 04}, {{3, 8, 1}, 24}, {{1, 1, 3}, 03}, {{1, 3, 1}, 03}, {{1, 1, 2}, 02}}
6k+4: Table[b[n_] := If[n < 2, 1, b /@ Most@Divisors[n] // Total]; s = {b[(6 k + 2)/1] - b[(6 k + 2)/2], b[(6 k + 3)/3], b[(6 k + 4)/2]}; {s, Times @@ s}, {k, 1, 12}]
{{{2, 1, 1}, 02}, {{2, 1, 4}, 08}, {{5, 1, 1}, 05}, {{2, 2, 3}, 12}, {{8, 1, 1}, 08}, {{2, 1, 8}, 16}, {{5, 3, 1}, 15}, {{6, 1, 3}, 18}, {{12, 1, 1}, 12}, {{2, 3, 16}, 96}, {{5, 1, 3}, 15}, {{2, 2, 3}, 12}}
6k+4: Table[b[n_] := If[n < 2, 1, b /@ Most@Divisors[n] // Total]; s = {b[(6 k + 2)/2], b[(6 k + 3)/3], b[(6 k + 4)/1] - b[(6 k + 4)/2]}; {s, Times @@ s}, {k, 1, 12}]
{{{2, 1, 2}, 04}, {{1, 1, 4}, 04}, {{3, 1, 2}, 06}, {{1, 2, 5}, 10}, {{8, 1, 2}, 16}, {{1, 1, 12}, 12}, {{3, 3, 2}, 18}, {{2, 1, 5},10}, {{8, 1, 2}, 16}, {{1, 3, 16}, 48}, {{3, 1, 10}, 30}, {{1, 2, 5}, 10}}
6k+5: Table[b[n_] := If[n < 2, 1, b /@ Most@Divisors[n] // Total]; s = {b[(6 k + 3)/3], b[(6 k + 4)/2], b[(6 k + 5)/1]}; {s, Times @@ s}, {k, 1, 12}]
{{{1, 1, 1}, 01}, {{1, 4, 1}, 04}, {{1, 1, 1}, 01}, {{2, 3, 1}, 06}, {{1, 1, 3}, 03}, {{1, 8, 1}, 08}, {{3, 1, 1}, 03}, {{1, 3, 1}, 03}, {{1, 1, 1}, 01}, {{3, 16, 3}, 144}, {{1, 3, 1}, 03}, {{2, 3, 3}, 18}}
6k+6: Table[b[n_] := If[n < 2, 1, b /@ Most@Divisors[n] // Total]; s = {b[(6 k + 4)/2], b[(6 k + 5)/1], b[(6 k + 6)/3]}; {s, Times @@ s}, {k, 1, 12}]
{{{1, 1, 2}, 02}, {{4, 1, 3}, 12}, {{1, 1, 4}, 04}, {{3, 1, 3}, 09}, {{1, 3, 8}, 24}, {{8, 1, 3}, 24}, {{1, 1, 8}, 08}, {{3, 1, 8}, 24}, {{1, 1, 8}, 08}, {{16, 3, 3}, 144}, {{3, 1, 20}, 60}, {{3, 3, 3}, 27}}
得到这样一串数(2个6k+4需合并): 6k+1无解(解数=0)
0, 2, 2, (2+4), 1, 2, 0, 2, 1, (8+4), 4, 12, 0, 9, 3, (5+6), 1, 4, 0, 8, 4, (12+10), 6, 9, 0, 24, 8, (8+16), 3, 24, 0, 8, 1, (16+12), 8, 24, 0, 9, 9, (15+18), 3, 8, 0, 32, 4, (18+10), 3, 24, 0, 192, 24, (12+16), 1, 8, ...
我还是找不到通项公式。 |
|