找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 2023-10-5 13:19:16 | 显示全部楼层
northwolves 发表于 2023-10-4 18:04
{1,2,3,5,7,10,13,18,23,30,37,47,57,70,83,101,119,142,165,195,225,262,299,346,393,450,507,577,647 ...

谢谢 northwolves!您有方法(我有题目)! 这算式可以调吗?谢谢!
第2串:a(1)=1, a(n) = a(n-1) + floor((n+0)/2))
  1. Table[If[n<2,n,a[n-1]]+Floor[(n+0)/2],{n,36}]
复制代码

第3串:a(1)=1, a(n) = a(n-1) + floor((n+1)/3))
  1. Table[If[n<2,n,a[n-1]]+Floor[(n+1)/3],{n,36}]
复制代码

第4串:a(1)=1, a(n) = a(n-1) + floor((n+2)/4))
  1. Table[If[n<2,n,a[n-1]]+Floor[(n+2)/4],{n,36}]
复制代码

第5串:a(1)=1, a(n) = a(n-1) + floor((n+3)/5))
  1. Table[If[n<2,n,a[n-1]]+Floor[(n+3)/5],{n,36}]
复制代码

第6串:a(1)=1, a(n) = a(n-1) + floor((n+4)/6))
  1. Table[If[n<2,n,a[n-1]]+Floor[(n+4)/6],{n,36}]
复制代码

第7串:a(1)=1, a(n) = a(n-1) + floor((n+5)/7))
  1. Table[If[n<2,n,a[n-1]]+Floor[(n+5)/7],{n,36}]
复制代码

第2串:1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65, 73, 82, 91, 101, 111, 122, 133, 145, 157, 170, 183, 197, 211, 226, 241,  
第3串:1, 2, 3, 4, 6, 8, 10, 13, 16, 19, 23, 27, 31, 36, 41, 46, 52, 58, 64, 71, 78, 85, 93, 101, 109, 118, 127, 136, 146, 156, 166, 177, 188,  
第4串:1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 19, 22, 25, 29, 33, 37, 41, 46, 51, 56, 61, 67, 73, 79, 85, 92, 99, 106, 113, 121, 129, 137, 145, 154, 163,   
第5串:1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 25, 28, 31, 35, 39, 43, 47, 51, 56, 61, 66, 71, 76, 82, 88, 94, 100, 106, 113, 120, 127, 134, 141,
第6串:1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 22, 25, 28, 31, 34, 37, 41, 45, 49, 53,57, 61, 66, 71, 76, 81, 86, 91, 97, 103, 109, 115, 121, 127, 134,  
第7串:1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 31, 34, 37, 40, 43, 47, 51, 55, 59, 63, 67, 71, 76, 81, 86, 91, 96, 101, 106, 112, 118, 124,
第8串:1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 28, 31, 34, 37, 40, 43, 46, 49, 53, 57, 61, 65, 69, 73, 77, 81, 86, 91, 96, 101, 106, 111, 116,
第9串:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 96, 101, 106, 111,
  OEIS 没有这样连贯的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2023-10-7 11:38:28 | 显示全部楼层
二进制数,且要求出现000,111的数,譬如:
a(1)=0,
a(2)=0,
a(3)=01, 111,
a(4)=03, 1000,1110,1111,
a(5)=08, 10000,10001,10111,11000,11100,11101,11110,11111,
a(6)=19, 100000,100001,100010,100011,100111,101000,101110,101111,110000,110001,110111,111000,111001,111010,111011,111100,111101,111110,111111,
a(7)=43,
a(8)=91,
......
0,0,1,3,8,18,40,91,......
这是怎样的一串数?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-10-7 12:27:13 | 显示全部楼层
  1. a[n_]:=Length@Select[IntegerDigits[Range[2^(n-1),2^n-1],2],SequenceCount[#,{0,0,0}]+SequenceCount[#,{1,1,1}]>0&];Table[a[n],{n,12}]
复制代码


{0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880, 1815}

评分

参与人数 1威望 +6 金币 +6 贡献 +6 经验 +6 鲜花 +6 收起 理由
王守恩 + 6 + 6 + 6 + 6 + 6 你的知识得太丰富,羡慕!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-10-7 12:30:15 | 显示全部楼层
  1. Table[Round[2^(r - 1) - ((Sqrt[5] + 1)/2)^(r + 1)/Sqrt[5]], {r, 30}]
复制代码


{0,0,1,3,8,19,43,94,201,423,880,1815,3719,7582,15397,31171,62952,126891,255379,513342,1030865,2068495,4147936,8313583,16655823,33358014,66791053,133703499,267603416,535524643}

评分

参与人数 1威望 +6 金币 +6 贡献 +6 经验 +6 鲜花 +6 收起 理由
王守恩 + 6 + 6 + 6 + 6 + 6 完美结合!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-10-7 12:31:52 | 显示全部楼层
A008466                a(n) = 2^n - Fibonacci(n+2).

0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880, 1815, 3719, 7582, 15397, 31171, 62952, 126891, 255379, 513342, 1030865, 2068495, 4147936, 8313583, 16655823, 33358014, 66791053, 133703499, 267603416, 535524643, 1071563515, 2143959070, 4289264409, 8580707127
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-10-7 12:36:58 | 显示全部楼层
  1. Table[Length@Select[Join@@Permutations/@IntegerPartitions[n],Max@@#>2&],{n,15}]
复制代码

  1. LinearRecurrence[{3, -1, -2}, {0, 0, 1}, 40]
复制代码

评分

参与人数 1威望 +6 金币 +6 贡献 +6 经验 +6 鲜花 +6 收起 理由
王守恩 + 6 + 6 + 6 + 6 + 6 太厉害了!!!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2023-10-8 09:39:41 | 显示全部楼层
northwolves 发表于 2023-10-7 12:31
A008466                a(n) = 2^n - Fibonacci(n+2).

0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880, 1815, 3719, 7582, 1 ...

好歹也是一个。0, 0, 1, 3, 8, 19, 43, 94, 201, 423, 880, 1815, 3719, 7582, 15397, 31171, 62952, 126891, 255379, 513342, 1030865, 2068495, 4147936, 8313583, 16655823, 33358014, 66791053, 133703499, 267603416 ......
  1. RecurrenceTable[{a[n]==2^(n-4)+2^(n-3)+2a[n-2]+a[n-3],a[1]==a[2]==0,a[3]==1},a[n],{n,1,9}]
复制代码

说明:
a[n]=2^(n-4)+a[n-3]+2a[n-2]+a[n-2]+2^(n-3)
a(01)=0,
a(02)=0,
a(03)=001,
a(04)=003=001+00+000+000+002,
a(05)=008=002+00+001+001+004,
a(06)=019=004+01+003+003+008,
a(07)=043=008+03+008+008+016,
a(08)=094=016+08+019+019+032,
a(09)=201=032+19+043+043+064,
a(10)=423=064+43+094+094+128,
a(11)=880=128+94+201+201+256,
......
a(n)=****=(1)+(2)+(3) +(4) +(5),
说明:
(1):头部=1000, 尾部=全排列,
(2):头部=1001,后面的"1"=a(n-3)头部的"1",
(3):头部=101, 后面的"1"=a(n-2)头部的"1",
(4):头部=110,后面的"0"=a(n-2)头部添"0",
(5):头部=111, 尾部=全排列。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2023-10-16 10:51:55 | 显示全部楼层
5, 7, 11, 17, 19, 29, 31, 41, 61, 67, 71, 79, 89, 97, 101, 107, 109, 127, 131, 137, 139, 151, 157, 167, 197, 211, 227, 229, 239, 269, 277, 307, 317, 331, 347, 349, 379, 401, 409, 419, 431, 439, 449, 461, ...
A136052。这样也可以。       
  1. Select[Prime@Range@90,PrimeQ[7#-6]&]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2023-10-17 20:15:48 | 显示全部楼层
将 2,3,4,5,6,…,n 排成数列{ak:k=1,2,3,4,5,…,n-1},使 ak 都是 k 的倍数,有几种排法?
a(00)=0,
a(01)=0,
a(02)=1,{2},
a(03)=1,{3,2},
a(04)=2,{2,4,3},{4,2,3},
a(05)=1,{5,2,3,4},
a(06)=3,{2,6,3,4,5}{3,2,6,4,5}{6,2,3,4,5},
a(07)=1,{7,2,3,4,5,6},
a(08)=3,{2,8,3,4,5,6,7},{4,2,3,8,5,6,7},{8,2,3,4,5,6,7},
a(09)=2,{3,2,9,4,5,6,7,8},{9,2,3,4,5,6,7,8},
a(10)=3,
a(11)=1,
a(12)=5,
a(13)=1,
a(14)=3,
a(15)=3,
a(16)=4,
......
{0, 0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 7, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 11, 1, 3, 5, 6, 3, 7, 1, 5, ...
  1. Prepend[DivisorSigma[0, Range[99]] - 1, 0]
复制代码

A032741        给出了上面的通项公式。
若改: 将 3,4,5,6,…,n 排成数列{ak:k=1,2,3,4,5,…,n-2},使 ak 都是 k 的倍数,有几种排法?
a(00)=0,
a(01)=0,
a(02)=0,
a(03)=1,{3},
a(04)=1,{3,4},
a(05)=1,{5,4,3},
a(06)=1,{5,6,3,4},
a(07)=1,{7,6,3,4,5},
a(08)=2,{7,4,3,8,5,6},{7,8,3,4,5,6},
a(09)=4,{3,4,8,9,5,6,7},{3,8,9,4,5,6,7},{9,4,3,8,5,6,7}{9,8,3,4,5,6,7},
a(10)=2,{3,10,9,4,5,6,7,8},{9,10,3,4,5,6,7,8},
a(11)=1,{11,10,3,4,5,6,7,8,9},
a(12)=3,{11,4,3,12,5,6,7,8,9,10},{11,6,3,4,5,12,7,8,9,10},{11,12,3,4,5,6,7,8,9,10},
a(13)=3,{13,4,3,12,5,6,7,8,9,10,11},{13,6,3,4,5,12,7,8,9,10,11},{13,12,3,4,5,6,7,8,9,10,11},
a(14)=1,{13,14,3,4,5,6,7,8,9,10,11,12},
a(15)=3,
......
还可以有通项公式吗?谢谢各位!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2023-10-19 13:26:30 | 显示全部楼层
409#前半部分有问题。
将2,3,4,5,6,…,n排成数列{a(k):k=1,2,3,4,5,…,n-1},使a(k)都是k的倍数,有几种排法?
a(00)=1,{1},   把409#的表示方法也简化一下。
a(01)=1,{2},   {2}表示:a(1)=2,
a(02)=1,{3},   {3}表示:a(1)=3,
a(03)=2,{2,4},{4},  {2,4}表示:a(1)=2,a(2)=4,{4}表示:a(1)=4,
a(04)=1,{5},
a(05)=3,{2,6}{3,6}{6},{2,6}表示:a(1)=2,a(2)=6,{3,6}表示:a(1)=3,a(3)=6,
a(06)=1,{7},
a(07)=4,{2,4,8},{2,8},{4,8},{8},   {2,4,8}表示:a(1)=2,a(2)=4,a(4)=8,......
a(08)=2,{3,9},{9},
a(09)=3,{2,10},{5,10},{10},
a(10)=1,{11},
a(11)=8,{2,4,12},{2,6,12},{2,12},{3,6,12},{3,12},{4,12},{6,12},{12},
a(12)=1,{13},
a(13)=3,{2,14},{7,14},{14},
a(14)=3,{3,15},{5,15},{15},
a(15)=8,{2,4,8,16},{2,4,16},{2,8,16},{2,16},{4,8,16},{4,16},{8,16},{16},
a(16)=1,{17},
a(17)=8,{2,6,18},{2,18},{3,6,18},{3,9,18},{3,18},{6,18},{9,18},{18},
a(18)=1,{19},
a(19)=8,{2,4,20},{2,10,20},{2,20},{4,20},{5,10,20},{5,20},{10,20,}{20},
{1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2,
8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112}
  1. a[0]=1;a[1]=1;a[n_]:=a[n]=a/[url=home.php?mod=space&uid=6175]@[/url]Most[Divisors[n]]//Total;a/@Range[96]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-29 09:53 , Processed in 0.025814 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表