找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
发表于 2024-8-9 11:21:49 | 显示全部楼层
王守恩 发表于 2024-8-2 15:29
a(1)=2——用1个1与1个2组成的2位置数有2个。
12,
21,

$C_{2n}^{n}=\{2,6,20,70,252,924,3432,12870,48620,184756,705432,2704156,10400600,40116600,155117520,601080390,2333606220,9075135300,35345263800,137846528820,538257874440,2104098963720,8233430727600,32247603683100,126410606437752,495918532948104,1946939425648112,7648690600760440,30067266499541040,118264581564861424\}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-8-18 11:04:27 | 显示全部楼层
A088404——我来给它配个通项公式——还能快一点吗?谢谢!
{1, 10, 55, 100, 505, 550, 1000, 5005, 5050, 5500, 10000, 50005, 50050, 50500, 55000, 100000, 500005, 500050, 500500, 505000, 550000, 1000000, 5000005,
5000050, 5000500, 5005000, 5050000, 5500000, 10000000, 50000005, 50000050, 50000500, 50005000, 50050000, 50500000, 55000000, 100000000, ......}               
Select[Range[10^8], Total[IntegerDigits[2 # + 1]] == 3 &]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-8-18 12:29:09 | 显示全部楼层
A+(A+1)的数字和=4。
A=6, 15, 51, 60, 105, 150, 501, 510, 555, 600, 1005, 1050, 1500, 5001, 5010, 5055, 5100, 5505, 5550, 6000, 10005, 10050, 10500, 15000, 50001, 50010, 50055, 50100, 50505, 50550, 51000, 55005, 55050, 55500, 60000,
100005, 100050, 100500, 105000, 150000, 500001, 500010, 500055, 500100, 500505, 500550, 501000, 505005, 505050, 505500, 510000, 550005, 550050, 550500, 555000, 600000, 1000005, 1000050, 1000500, 1005000,
1050000, 1500000, 5000001, 5000010, 5000055, 5000100, 5000505, 5000550, 5001000, 5005005, 5005050, 5005500, 5010000, 5050005, 5050050, 5050500, 5055000, 5100000, 5500005, 5500050, 5500500, 5505000,
5550000, 6000000, 10000005, 10000050, 10000500, 10005000, 10050000, 10500000, 15000000, 50000001, 50000010, 50000055, 50000100, 50000505, 50000550, 50001000, 50005005, 50005050, 50005500, 50010000,
50050005, 50050050, 50050500, 50055000, 50100000, 50500005, 50500050, 50500500, 50505000, 50550000, 51000000, 55000005, 55000050, 55000500, 55005000, 55050000, 55500000, 60000000, 100000005, 100000050}

[欣赏]——漂亮整洁的数字串——OEIS没有——你来给她配个通项? 谢谢!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-8-18 21:33:28 | 显示全部楼层
王守恩 发表于 2024-8-18 11:04
A088404——我来给它配个通项公式——还能快一点吗?谢谢!
{1, 10, 55, 100, 505, 550, 1000, 5005, 5050, ...
  1. Sort[r = 10^Range[0, 30]; Union[r, 5*Total /@ Subsets[r, {2}]]]
复制代码

评分

参与人数 1威望 +9 金币 +9 贡献 +9 经验 +9 鲜花 +9 收起 理由
王守恩 + 9 + 9 + 9 + 9 + 9 A088404—没公式。

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-8-18 22:02:43 | 显示全部楼层
本帖最后由 northwolves 于 2024-8-18 22:05 编辑
  1. Sort[r = Range@10;
  2. Join[6*10^(r - 1), 5*Total /@ Subsets[10^(r - 1), {3}],
  3.   Flatten@Table[{10^s + 5*10^t, 5*10^s + 10^t}, {s, r}, {t, 0,
  4.      s - 1}]]]
复制代码


毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-8-18 22:03:32 | 显示全部楼层
王守恩 发表于 2024-8-18 12:29
A+(A+1)的数字和=4。
A=6, 15, 51, 60, 105, 150, 501, 510, 555, 600, 1005, 1050, 1500, 5001, 5010, 505 ...
  1. Sort[r = Range@10;
  2. Join[6*10^(r - 1), 5*Total /@ Subsets[10^(r - 1), {3}],
  3.   Flatten@Table[{10^s + 5*10^t, 5*10^s + 10^t}, {s, r}, {t, 0,
  4.      s - 1}]]]
复制代码


{6,15,51,60,105,150,501,510,555,600,1005,1050,1500,5001,5010,5055,5100,5505,5550,6000,10005,10050,10500,15000,50001,50010,50055,50100,50505,50550,51000,55005,55050,55500,60000,100005,100050,100500,105000,150000,500001,500010,500055,500100,500505,500550,501000,505005,505050,505500,510000,550005,550050,550500,555000,600000,1000005,1000050,1000500,1005000,1050000,1500000,5000001,5000010,5000055,5000100,5000505,5000550,5001000,5005005,5005050,5005500,5010000,5050005,5050050,5050500,5055000,5100000,5500005,5500050,5500500,5505000,5550000,6000000,10000005,10000050,10000500,10005000,10050000,10500000,15000000,50000001,50000010,50000055,50000100,50000505,50000550,50001000,50005005,50005050,50005500,50010000,50050005,50050050,50050500,50055000,50100000,50500005,50500050,50500500,50505000,50550000,51000000,55000005,55000050,55000500,55005000,55050000,55500000,60000000,100000005,100000050,100000500,100005000,100050000,100500000,105000000,150000000,500000001,500000010,500000055,500000100,500000505,500000550,500001000,500005005,500005050,500005500,500010000,500050005,500050050,500050500,500055000,500100000,500500005,500500050,500500500,500505000,500550000,501000000,505000005,505000050,505000500,505005000,505050000,505500000,510000000,550000005,550000050,550000500,550005000,550050000,550500000,555000000,600000000,1000000005,1000000050,1000000500,1000005000,1000050000,1000500000,1005000000,1050000000,1500000000,5000000001,5000000010,5000000055,5000000100,5000000505,5000000550,5000001000,5000005005,5000005050,5000005500,5000010000,5000050005,5000050050,5000050500,5000055000,5000100000,5000500005,5000500050,5000500500,5000505000,5000550000,5001000000,5005000005,5005000050,5005000500,5005005000,5005050000,5005500000,5010000000,5050000005,5050000050,5050000500,5050005000,5050050000,5050500000,5055000000,5100000000,5500000005,5500000050,5500000500,5500005000,5500050000,5500500000,5505000000,5550000000,6000000000,10000000005,10000000050,10000000500,10000005000,10000050000,10000500000,10005000000,10050000000,10500000000,15000000000,50000000001,50000000010,50000000100,50000001000,50000010000,50000100000,50001000000,50010000000,50100000000,51000000000}

评分

参与人数 1威望 +12 金币 +12 贡献 +12 经验 +12 鲜花 +12 收起 理由
王守恩 + 12 + 12 + 12 + 12 + 12 赞一个!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-8-19 14:30:34 | 显示全部楼层
northwolves 发表于 2024-8-18 22:03
{6,15,51,60,105,150,501,510,555,600,1005,1050,1500,5001,5010,5055,5100,5505,5550,6000,10005,1005 ...

每个数 - 1,  还是一串数。OEIS就肯定没有了。
  1. Sort[r = Range@10; Join[6*10^(r - 1), 5*Total / @Subsets[10^(r - 1), {3}], Flatten@Table[{10^s + 5*10^t, 5*10^s + 10^t}, {s, r}, {t, 0, s - 1}]]] - 1
复制代码

{5, 14, 50, 59, 104, 149, 500, 509, 554, 599, 1004, 1049, 1499, 5000, 5009, 5054, 5099, 5504, 5549, 5999, 10004, 10049, 10499, 14999, 50000, 50009, 50054, 50099, 50504, 50549, 50999, 55004, 55049, 55499,
59999, 100004, 100049, 100499, 104999, 149999, 500000, 500009, 500054, 500099, 500504, 500549, 500999, 505004, 505049, 505499, 509999, 550004, 550049, 550499, 554999, 599999, 1000004, 1000049,
1000499, 1004999, 1049999, 1499999, 5000000, 5000009, 5000054, 5000099, 5000504, 5000549, 5000999, 5005004, 5005049, 5005499, 5009999, 5050004, 5050049, 5050499, 5054999, 5099999, 5500004, 5500049,
5500499, 5504999, 5549999, 5999999, 10000004, 10000049, 10000499, 10004999, 10049999, 10499999, 14999999, 50000000, 50000009, 50000054, 50000099, 50000504, 50000549, 50000999, 50005004, 50005049,
50005499, 50009999, 50050004, 50050049, 50050499, 50054999, 50099999, 50500004, 50500049, 50500499, 50504999, 50549999, 50999999, 55000004, 55000049, 55000499, 55004999, 55049999, 55499999, ......}

{5, 14, 50, 59, 104, 149, 500, 509, 554, 599, 1004, 1049, 1499, 5000, 5009, 5054, 5099, 5504, 5549, 5999, 10004, 10049, 10499, 14999, 50000, 50009, 50054, 50099, 50504, 50549, 50999, 55004, 55049, 55499,
59999, 100004, 100049, 100499, 104999, 149999, 500000, 500009, 500054, 500099, 500504, 500549, 500999, 505004, 505049, 505499, 509999, 550004, 550049, 550499, 554999, 599999, 1000004, 1000049,
1000499, 1004999, 1049999, 1499999, 5000000, 5000009, 5000054, 5000099, 5000504, 5000549, 5000999, 5005004, 5005049, 5005499, 5009999, 5050004, 5050049, 5050499, 5054999, 5099999, 5500004, 5500049,
5500499, 5504999, 5549999, 5999999, 10000004, 10000049, 10000499, 10004999, 10049999, 10499999, 14999999, 50000000, 50000009, 50000054, 50000099, 50000504, 50000549, 50000999, 50005004, 50005049,
50005499, 50009999, 50050004, 50050049, 50050499, 50054999, 50099999, 50500004, 50500049, 50500499, 50504999, 50549999, 50999999, 55000004, 55000049, 55000499, 55004999, 55049999, 55499999, ......}
  1. Select[Range[10^8], Total[IntegerDigits[2 # + 3]] == 4 &]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-8-27 14:40:54 | 显示全部楼层
三角数A=n(n+1)/2的数字和=3*1, A={2, 6, 15, 20, 24, 141, 200, 2000, 20000, 200000, 2000000,
三角数A=n(n+1)/2的数字和=3*2, A={3, 5, 14, 21, 66, 77, 201, 473, 2001, 15620, 20001, 200001, 2000001,
三角数A=n(n+1)/2的数字和=3*3, A={8, 9, 17, 18, 26, 35, 45, 53, 63, 80, 81, 89, 126, 144, 161, 162, 179, 206, 215, 224, 449, 458, 477, 666, 800, 801, 1421, 1575, 1620, 1673, 2006, 2015, 2195, 2835, 4473, 4733, 6326, 8000, 8001, 8126,  
三角数A=n(n+1)/2的数字和=3*4, A={11, 29, 33, 38, 42, 47, 51, 60, 65, 69, 78, 101, 110, 119, 146, 150, 155, 159, 164, 173, 195, 204, 245, 249, 258, 317, 326, 375, 402, 447, 510, 533, 600, 632, 663, 681, 722, 1001, 1095, 1122, 1266, 1415,
三角数A=n(n+1)/2的数字和=3*5, A={12, 23, 30, 32, 39, 41, 48, 50, 57, 59, 68, 75, 84, 86, 93, 95, 102, 104, 111, 113, 120, 122, 149, 156, 158, 167, 174, 185, 203, 210, 219, 221, 228, 237, 246, 255, 257, 266, 273, 284, 293, 300, 318, 320,
三角数A=n(n+1)/2的数字和=3*6, A={27, 36, 44, 54, 62, 71, 72, 90, 98, 99, 117, 134, 135, 143, 152, 153, 170, 171, 180, 197, 198, 207, 216, 225, 233, 242, 251, 260, 261, 269, 279, 287, 288, 297, 323, 324, 333, 341, 350, 359, 377, 378, 395,
三角数A=n(n+1)/2的数字和=3*7, A={56, 74, 83, 87, 92, 96, 105, 114, 123, 128, 137, 168, 177, 182, 186, 191, 209, 213, 218, 222, 240, 254, 263, 272, 276, 281, 285, 290, 294, 299, 303, 321, 330, 335, 339, 344, 348, 353, 357, 362, 366, 371,

把第一个数取出来(我的电脑只能出来这么几个)。OEIS没有这串数。
{2, 3, 8, 11, 12, 27, 56, 129, 107, 132, 309, 368, 627, 968, 1332, 3129, 3434, 5291, 8831, 13332, 18972, 28248, 37067, 77067, 107516, 140547, 278172, 368507,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-8-30 09:53:57 | 显示全部楼层
此序列共有 25332 个数。第一个数是 2。最后一个数是 987653201。OEIS——A046732。
  1. Select[Prime[Range[600]], Length[Union[x = IntegerDigits[#]]] == Length[x] && PrimeQ[FromDigits[Reverse[x]]] &]
复制代码

{2, 3, 5, 7, 13, 17, 31, 37, 71, 73, 79, 97, 107, 149, 157, 167, 179, 347, 359, 389, 701, 709, 739, 743, 751, 761, 769, 907, 937, 941, 953,
967, 971, 983, 1069, 1097, 1237, 1249, 1259, 1279, 1283, 1409, 1429, 1439, 1453, 1487, 1523, 1583, 1597, 1657, 1723, 1753, 1789, 1847,
1867, 1879, 3019, 3049, 3067, 3089, 3109, 3169, 3251, 3257, 3271, 3407, 3467, 3469, 3527, 3541, 3571, 3697, 3719, 3821, 3851, 3917, ...}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-8-31 08:47:23 | 显示全部楼层
用双面刻字(每面只能刻10个数码中的1个)的木块标记1到n,最少需要多少个木块?
1个木块可以标记1。(略去1个木块可以标记1,2)
2个木块可以标记1,2,3。(略去2个木块可以标记1,2,3,4)
3个木块可以标记1,2,3,4,5。
4个木块可以标记1,2,3,4,5,6,7。
5个木块可以标记1——9。
6个木块可以标记1——11。
7个木块可以标记1——33。
8个木块可以标记1——55。
9个木块可以标记1——77。

得到一串数。
1, 3, 5, 7, 9, 11, 33, 55, 77, 99, 111, 333, 555, 777, 999, 1111, ...
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-21 21:15 , Processed in 0.027410 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表