找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 2024-7-20 13:54:49 | 显示全部楼层
northwolves 发表于 2024-7-15 12:30
{{1,7},{2,11},{3,13},{4,14},{5,19},{6,21},{7,22},{8,25},{9,26},{10,28},{11,35},{12,37},{13,38},{ ...

这些按钮还是学不了。A115881——应该有通项公式的。

0, 0, 1, 0, 4, 2, 9, 1, 16, 8, 25, 4, 36, 18, 49, 9, 64, 32, 81, 16, 100, 50, 121, 25, 144, 72, 169, 36, 196, 98, 225, 49, 256, 128, 289, 64, 324, 162, 361, 81, 400, 200, 441, 100, 484, 242, 529, 121, 576,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-7-23 10:31:40 | 显示全部楼层
王守恩 发表于 2024-7-20 13:54
这些按钮还是学不了。A115881——应该有通项公式的。

0, 0, 1, 0, 4, 2, 9, 1, 16, 8, 25, 4, 36, 18, 49 ...

$a_n=(\lfloor \frac{n+6}{4}\rfloor -\lfloor \frac{n+1}{4}\rfloor )*\lfloor\frac{n+1}{3+(-1)^n}-\frac{1}{2}\rfloor ^2$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-7-24 10:58:11 | 显示全部楼层
northwolves 发表于 2024-7-23 10:31
$a_n=(\lfloor \frac{n+6}{4}\rfloor -\lfloor \frac{n+1}{4}\rfloor )*\lfloor\frac{n+1}{3+(-1)^n}-\fr ...

非负整数 a,b,c,d,  a,b,c 成等差数列,  b,c,d 成等比数列,  其中: d=a+n,  a,b,c,d 最大是多少?
n=1,无解,
n=2,无解,
n=3,无解,
n=4,a,b,c,d={0,1,2,4},
n=5,无解,
n=6,无解,
n=7,a,b,c,d={2,4,6,9},
n=8,a,b,c,d={0,2,4,8},
n=9,无解,
n=10,a,b,c,d={6,9,12,16},
n=11,无解,
n=12,a,b,c,d={0,3,6,12},
n=13,a,b,c,d={12,16,20,25},
n=14,a,b,c,d={4,8,12,18},
n=15,无解,
n=16,a,b,c,d={20,25,30,36},
n=17,无解,
n=18,无解,
n=19,a,b,c,d={30,36,42,49},
n=20,a,b,c,d={12,18,24,32},
n=21,a,b,c,d={6,12,18,27},
n=22,a,b,c,d={42,49,56,64},
n=23,无解,
n=24,a,b,c,d={0,6,12,24},
n=25,a,b,c,d={56,64,72,81},
n=26,a,b,c,d={24,32,40,50},
n=27,无解,
n=28,a,b,c,d={72,81,90,100},
n=29,无解,
n=30,a,b,c,d={18,27,36,48},
n=31,a,b,c,d={90,100,110,121},
n=32,a,b,c,d={40,50,60,72},
n=33,无解,
n=34,a,b,c,d={110,121,132,144},
n=35,a,b,c,d={10,20,30,45},
n=36,a,b,c,d={0,9,18,36},
n=37,a,b,c,d={132,144,156,169},
n=38,a,b,c,d={60.72,84,98},
n=39,a,b,c,d={36,48,60,75},
n=40,a,b,c,d={156,169,182,196},
......
得到一串数。
{a, a, a, 0, a, a, 2, 0, a, 6, a, 0, 12, 4, a, 20, a, a, 30, 12, 6, 42, a, 0, 56, 24, a, 72, a, 18, 90, 40, a, 110, 10, 0, 132, 60, 36, 156, a, 12, 182, 84, 4, 210, a, 60, 240, 112, a, 272, a, 10, 306, 144, 90, 342, a, 36, 380, 180, 18, 420, 60, 126, 462, 220}
  1. Table[Max[a /. Solve[{(2 c)/(a + c) == (a + n)/c, 0 <= a <= c,  Mod[a + c, 2] == 0}, {a, c}, Integers]], {n, 1, 68}]
复制代码

这通项公式只能这样了吧?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-7-24 15:15:37 | 显示全部楼层
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60}
  1. Table[Ceiling[(n + Pi)/Power[E^Pi, (n)^-1]], {n, 60}]
复制代码

会有对不上的吗?!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-7-24 16:36:46 | 显示全部楼层
A054925——这通项公式会有问题吗?!

0, 0, 1, 2, 3, 5, 8, 11, 14, 18, 23, 28, 33, 39, 46, 53, 60, 68, 77, 86, 95, 105, 116, 127, 138, 150, 163, 176, 189, 203, 218, 233, 248, 264, 281, 298, 315, 333, 352, 371, 390, 410, 431, 452, 473, 495, 518, 541, 564, 588, 613, 638, 663, 689, ...
  1. Table[Round[(n - 1)/(Power[E^4, (n)^-1] - 1)], {n, 60}]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-7-27 13:23:10 | 显示全部楼层
求通项公式。

{0, 1, 0, 1, 2, 1, 2, 1, 2, 4, 2, 4, 2, 4, 2, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 9, 6, 9, 6, 9, 6, 9, 6, 9, 6, 9, 12, 9, 12, 9, 12, 9, 12, 9, 12, 9, 12, 9, 12, 16, 12, 16, 12, 16, 12, 16, 12, 16, 12,
16, 12, 16, 12, 16, 20, 16, 20, 16, 20, 16, 20, 16, 20, 16, 20, 16, 20, 16, 20, 16, 20, 25, 20, 25, 20, 25, 20, 25, 20, 25, 20, 25, 20, 25, 20, 25, 20, 25, 20, 25, 30, 25, 30, 25,
30, 25, 30, 25, 30, 25, 30, 25, 30, 25, 30, 25, 30, 25, 30, 25, 30, 36, 30, 36, 30, 36, 30, 36, 30, 36, 30, 36, 30, 36, 30, 36, 30, 36, 30, 36, 30, 36, 30, 36, 42, 36, 42, 36, 42,
36, 42, 36, 42, 36, 42, 36, 42, 36, 42, 36, 42, 36, 42, 36, 42, 36, 42, 36, 42, 49, 42, 49, 42, 49, 42, 49, 42, 49, 42, 49, 42, 49, 42, 49, 42, 49, 42, 49, 42, 49, 42, 49, 42, 49,
42, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 49, 56, 64, 56, 64, 56, 64, 56, 64, 56, 64, 56, 64, 56, 64,......,

0有2个。1有4个。2有6个。4有8个。6有10个。9有12个。12有14个。16有16个。20有18个。25有20个。30有22个。36有24个。42有26个。49有28个。56有30个。64有32个。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-7-29 09:58:28 | 显示全部楼层
0, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 31, 31,
32, 32, 33, 33, 34, 34, 35, 35, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 46, 46, 47, 47, 48, 48, 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 54, 54, 55, 56, 56, 57, 57, 58, 58,
59, 59, 60, 60, 61, 61, 62, 62, 63, 63, 64, 64, 65, 65, 66, 67, 67, 68, 68, 69, 69, 70, 70, 71, 71, 72, 72, 73, 73, 74, 74, 75, 75, 76, 76, 77, 77, 78, 79, 79, 80, 80, 81, 81, 82, 82, 83, 83, 84, 84, 85,
85, 86, 86, 87, 87, 88, 88, 89, 89, 90, 90, 91, 92, 92, 93, 93, 94, 94, 95, 95, 96, 96, 97, 97, 98, 98, 99, 99, 100, 100, 101, 101, 102, 102, 103, 103, 104, 104, 105, 106, 106, 107, 107, 108, 108, ...}

A259549——有个通项公式(Jun 08 2019)——看我们的  !  !  !

  1. Table[Round[(n + Sqrt[n])/2], {n, 0, 200}]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-7-30 10:20:59 | 显示全部楼层
A035608——这个通项也可以——Table[Floor[(n - 1)/(Power[E, (n)^-1] - 1)], {n, 180}]
               
0, 1, 5, 10, 18, 27, 39, 52, 68, 85, 105, 126, 150, 175, 203, 232, 264, 297, 333, 370, 410, 451, 495, 540, 588, 637, 689, 742, 798, 855, 915, 976, 1040, 1105, 1173, 1242, 1314, 1387, 1463, 1540, 1620, 1701,
1785, 1870, 1958, 2047, 2139, 2232, 2328, 2425, 2525, 2626, 2730, 2835, 2943, 3052, 3164, 3277, 3393, 3510, 3630, 3751, 3875, 4000, 4128, 4257, 4389, 4522, 4658, 4795, 4935, 5076, 5220, 5365, 5513,
5662, 5814, 5967, 6123, 6280, 6440, 6601, 6765, 6930, 7098, 7267, 7439, 7612, 7788, 7965, 8145, 8326, 8510, 8695, 8883, 9072, 9264, 9457, 9653, 9850, 10050, 10251, 10455, 10660, 10868, 11077, ....

A014848——这个通项也可以——Table[Round[n/(Power[E, (n)^-1] - 1)], {n, 180}]       

1, 3, 8, 14, 23, 33, 46, 60, 77, 95, 116, 138, 163, 189, 218, 248, 281, 315, 352, 390, 431, 473, 518, 564, 613, 663, 716, 770, 827, 885, 946, 1008, 1073, 1139, 1208, 1278, 1351, 1425, 1502, 1580, 1661,
1743, 1828, 1914, 2003, 2093, 2186, 2280, 2377, 2475, 2576, 2678, 2783, 2889, 2998, 3108, 3221, 3335, 3452, 3570, 3691, 3813, 3938, 4064, 4193, 4323, 4456, 4590, 4727, 4865, 5006, 5148, 5293, 5439,
5588, 5738, 5891, 6045, 6202, 6360, 6521, 6683, 6848, 7014, 7183, 7353, 7526, 7700, 7877, 8055, 8236, 8418, 8603, 8789, 8978, 9168, 9361, 9555, 9752, 9950, 10151, 10353, 10558, 10764, 10973,  .........

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-8-2 15:29:20 | 显示全部楼层
a(1)=2——用1个1与1个2组成的2位置数有2个。
12,
21,
a(2)=6——用2个1与2个2组成的4位置数有6个。
1122,
1212,
1221,
2112,
2121,
2211,
a(3)=20——用3个1与3个2组成的6位置数有20个。
111222,
112122,
112212,
112221,
121122,
121212,
121221,
122112,
122121,
122211,
a(4)=70——用4个1与4个2组成的8位置数有70个。
11112222,
11121222,
11122122,
11122212,
11122221,
11211222,
11212122,
11212212,
11212221,
11221122,
11221212,
11221221,
11222112,
11222121,
11222211,
12111222,
12112122,
12112212,
12112221,
12121122,
12121212,
12121221,
12122112,
12122121,
12122211,
12211122,
12211212,
12211221,
12212112,
12212121,
12212211,
12221112,
12221121,
12221211,
12222111,
a(5)——用5个1与5个2组成的10位置数有?个。
a(6)——用6个1与6个2组成的12位置数有?个。
a(7)——用7个1与7个2组成的14位置数有?个。
a(8)——用8个1与8个2组成的16位置数有?个。
a(9)——用9个1与9个2组成的18位置数有?个。



补充内容 (2024-8-9 10:02):
a(1)=2——用1个1与1个2组成的2位数有2个。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-8-9 10:01:06 | 显示全部楼层
A134030——2024年3月11日
0, 1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 15, 18, 20, 23, 26, 28, 32, 35, 38, 42, 46, 49, 54, 58, 62, 67, 71, 76, 81, 86, 92, 97, 103, 109,
115, 121, 127, 134, 140, 147, 154, 161, 168, 176, 183, 191, 199, 207, 215, 223, 232, 240, 249, 258, 267, 277, 286, 296, 306,
316, 326, 336, 346, 357, 368, 379, 390, 401, 412, 424, 436, 447, 459, 472, 484, 496, 509, 522, 535, 548, 561, 575, 588, 602,
616, 630, 644, 659, 673, 688, 703, 718, 733, 748, 764, 780, 796, 812, 828, 844, 860, 877, 894, 911, 928, 945, 963, 980, 998}
  1. Table[Round[Cot[Pi/n]*n/4], {n, 3, 112}]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 17:35 , Processed in 0.029540 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表