王守恩 发表于 2019-2-6 08:43:51

王守恩 发表于 2019-2-5 09:51
A079262
1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080,
16128, 32192, 64256, ...

敬祝大家身体健康!新年快乐!
有这样一串数:A000045               
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269,
2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169,...........


\[\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/2}\frac{(k-m+1)*(k-2m)!*2^{k-3m}\ }{(k-3m+1)!*m!*\cos(m\pi)}\]

王守恩 发表于 2019-2-7 14:14:05

王守恩 发表于 2019-2-6 08:43
敬祝大家身体健康!新年快乐!
有这样一串数:A000045               
1, 2, 3, 5, 8, 13, 21, 34, 5 ...

用 “一个算式” 把不同的 “兔子数列” 串起来!

A000045:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/2}\frac{(k-1m+1)*(k-2m)!*2^{k-3m}\ }{(k-3m+1)!*m!*\cos(m\pi)}\)
A000073:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/3}\frac{(k-2m+1)*(k-3m)!*2^{k-4m}\ }{(k-4m+1)!*m!*\cos(m\pi)}\)
A000078:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/4}\frac{(k-3m+1)*(k-4m)!*2^{k-5m}\ }{(k-5m+1)!*m!*\cos(m\pi)}\)
A001591:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/5}\frac{(k-4m+1)*(k-5m)!*2^{k-6m}\ }{(k-6m+1)!*m!*\cos(m\pi)}\)
A006261:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/6}\frac{(k-5m+1)*(k-6m)!*2^{k-7m}\ }{(k-7m+1)!*m!*\cos(m\pi)}\)
A066178:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/7}\frac{(k-6m+1)*(k-7m)!*2^{k-8m}\ }{(k-8m+1)!*m!*\cos(m\pi)}\)
A079262:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/8}\frac{(k-7m+1)*(k-8m)!*2^{k-9m}\ }{(k-9m+1)!*m!*\cos(m\pi)}\)
A104144:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/9}\frac{(k-8m+1)*(k-9m)!*2^{k-10m}\ }{(k-10m+1)!*m!*\cos(m\pi)}\)
A008862:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/10}\frac{(k-9m+1)*(k-10m)!*2^{k-11m}\ }{(k-11m+1)!*m!*\cos(m\pi)}\)
A008863:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/11}\frac{(k-10m+1)*(k-11m)!*2^{k-12m}\ }{(k-12m+1)!*m!*\cos(m\pi)}\)
A219531:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/12}\frac{(k-11m+1)*(k-12m)!*2^{k-13m}\ }{(k-13m+1)!*m!*\cos(m\pi)}\)
A133025:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/13}\frac{(k-12m+1)*(k-13m)!*2^{k-14m}\ }{(k-14m+1)!*m!*\cos(m\pi)}\)
A219676:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/14}\frac{(k-13m+1)*(k-14m)!*2^{k-15m}\ }{(k-15m+1)!*m!*\cos(m\pi)}\)
A220051:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/15}\frac{(k-14m+1)*(k-15m)!*2^{k-16m}\ }{(k-16m+1)!*m!*\cos(m\pi)}\)
A097029:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/16}\frac{(k-15m+1)*(k-16m)!*2^{k-17m}\ }{(k-17m+1)!*m!*\cos(m\pi)}\)
..............:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/17}\frac{(k-16m+1)*(k-17m)!*2^{k-18m}\ }{(k-18m+1)!*m!*\cos(m\pi)}\)
..............:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/18}\frac{(k-17m+1)*(k-18m)!*2^{k-19m}\ }{(k-19m+1)!*m!*\cos(m\pi)}\)
..............:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/19}\frac{(k-18m+1)*(k-19m)!*2^{k-20m}\ }{(k-20m+1)!*m!*\cos(m\pi)}\)

王守恩 发表于 2019-2-8 19:24:04

王守恩 发表于 2019-2-7 14:14
用 “一个算式” 把不同的 “兔子数列” 串起来!

A000045:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/2 ...

用 “一个算式” 把不同的 “兔子数列” 串起来(42 楼修改一下)!

A000045:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/2}\frac{(k-1m+1)*(k-2m)!*2^{k-3m}\ }{(k-3m+1)!*m!*\cos(m\pi)}\)
A000073:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/3}\frac{(k-2m+1)*(k-3m)!*2^{k-4m}\ }{(k-4m+1)!*m!*\cos(m\pi)}\)
A000078:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/4}\frac{(k-3m+1)*(k-4m)!*2^{k-5m}\ }{(k-5m+1)!*m!*\cos(m\pi)}\)
A001591:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/5}\frac{(k-4m+1)*(k-5m)!*2^{k-6m}\ }{(k-6m+1)!*m!*\cos(m\pi)}\)
A001592:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/6}\frac{(k-5m+1)*(k-6m)!*2^{k-7m}\ }{(k-7m+1)!*m!*\cos(m\pi)}\)
A066178:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/7}\frac{(k-6m+1)*(k-7m)!*2^{k-8m}\ }{(k-8m+1)!*m!*\cos(m\pi)}\)
A079262:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/8}\frac{(k-7m+1)*(k-8m)!*2^{k-9m}\ }{(k-9m+1)!*m!*\cos(m\pi)}\)
A104144:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/9}\frac{(k-8m+1)*(k-9m)!*2^{k-10m}\ }{(k-10m+1)!*m!*\cos(m\pi)}\)
A122265:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/10}\frac{(k-9m+1)*(k-10m)!*2^{k-11m}\ }{(k-11m+1)!*m!*\cos(m\pi)}\)
A168082:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/11}\frac{(k-10m+1)*(k-11m)!*2^{k-12m}\ }{(k-12m+1)!*m!*\cos(m\pi)}\)
A168083:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/12}\frac{(k-11m+1)*(k-12m)!*2^{k-13m}\ }{(k-13m+1)!*m!*\cos(m\pi)}\)
A168084:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/13}\frac{(k-12m+1)*(k-13m)!*2^{k-14m}\ }{(k-14m+1)!*m!*\cos(m\pi)}\)
A220469:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/14}\frac{(k-13m+1)*(k-14m)!*2^{k-15m}\ }{(k-15m+1)!*m!*\cos(m\pi)}\)
A220493:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/15}\frac{(k-14m+1)*(k-15m)!*2^{k-16m}\ }{(k-16m+1)!*m!*\cos(m\pi)}\)
A249169:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/16}\frac{(k-15m+1)*(k-16m)!*2^{k-17m}\ }{(k-17m+1)!*m!*\cos(m\pi)}\)
A............:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/17}\frac{(k-16m+1)*(k-17m)!*2^{k-18m}\ }{(k-18m+1)!*m!*\cos(m\pi)}\)
A............:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/18}\frac{(k-17m+1)*(k-18m)!*2^{k-19m}\ }{(k-19m+1)!*m!*\cos(m\pi)}\)
A............:\(\D f(n)=\sum_{k=n}^{n}\sum_{m=0}^{k/19}\frac{(k-18m+1)*(k-19m)!*2^{k-20m}\ }{(k-20m+1)!*m!*\cos(m\pi)}\)

王守恩 发表于 2019-2-13 04:55:13

本帖最后由 王守恩 于 2019-2-13 12:26 编辑

王守恩 发表于 2019-2-8 19:24
用 “一个算式” 把不同的 “兔子数列” 串起来(42 楼修改一下)!

A000045:\(\D f(n)=\sum_{k=n}^{n} ...

      还能包装吗?A156638
4, 5, 13, 14, 22, 23, 31, 32, 40, 41, 49, 50, 58, 59, 67, 68, 76, 77,
85, 86, 94, 95, 103, 104, 112, 113, 121, 122, 130, 131, 139, 140, 148,
149, 157, 158, 166, 167, 175, 176, 184, 185, 193, 194, 202, 203, 211,
212, 220, 221, 229, 230, 238, 239, 247, 248, 256

\(\D a(n)=\frac{9n-16\cos(\frac{n\pi}{2})^2-9\sin(\frac{n\pi}{2})^2+8}{2}=\frac{9n-8\cos(\frac{n\pi}{2})^2-\sin(\frac{n\pi}{2})^2}{2}\)

\(\D =\frac{9n-8\cos(n\pi)-9\sin(\frac{n\pi}{2})^2}{2}=\frac{9n+7\sin(\frac{n\pi}{2})^2-8}{2}=\frac{9n-7\cos(\frac{n\pi}{2})^2-1}{2}\)

dlpg070 发表于 2019-2-13 09:12:06

本帖最后由 dlpg070 于 2019-2-13 09:22 编辑

王守恩 发表于 2019-2-8 19:24
用 “一个算式” 把不同的 “兔子数列” 串起来(42 楼修改一下)!

A000045:\(\D f(n)=\sum_{k=n}^{n} ...
“一个算式“的通项公式化简后
f(n,k)= \(\sum _{m=0}^{\frac{k}{n}} \frac{\sec (\pim) 2^{k-m (n+1)} (k-m (n-1)+1) (k-m n)!}{m! (k-m (n+1)+1)!}\)   n>=2 ,k>=0
n台阶数 k 序号

王守恩 发表于 2019-2-13 19:47:44

dlpg070 发表于 2019-2-13 09:12
“一个算式“的通项公式化简后
f(n,k)= \(\sum _{m=0}^{\frac{k}{n}} \frac{\sec (\pim) 2^{k-m (n+1) ...

      A060464
0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 24, 25,
26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47,
48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 69, 70, 71,
72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 87, 88, 89, 90, 91, 92, 93,

\(\D a(n)=\frac{9n-3-2*((n+2)\mod7)}{7}\)

dlpg070 发表于 2019-2-14 11:09:29

王守恩 发表于 2019-2-13 19:47
A060464
0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 24, 25,
26, 27 ...

此通项公式很好,
比 A060464给出的好很多
但还可以进一步化简:
a(n)=-1+n+2 Floor[(2+n)/7]
各个通项公式都已经验证

王守恩 发表于 2019-2-14 11:35:30

dlpg070 发表于 2019-2-14 11:09
此通项公式很好,
比 A060464给出的好很多
但还可以进一步化简:


      我说的是方法,不是一道题 。      A047569
0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24,
25, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 44, 45, 46, 47,
48, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71,
72, 73, 76, 77, 78, 79, 80, 81, 84, 85, 86, 87, 88

\(\D a(n)=\frac{4n-((n+3)\mod6)}{3}\)

dlpg070 发表于 2019-2-14 15:11:31

王守恩 发表于 2019-2-14 11:35
我说的是方法,不是一道题 。      A047569
0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, ...

可以进一步化简:
   a(n)=-1 + n + 2 Floor[(3 + n)/6]
供参考,
相信以你的实力,能证明二个公式的等效性,
甚至直接推导出简化的公式
再接再厉   

王守恩 发表于 2019-2-14 18:56:29

本帖最后由 王守恩 于 2019-2-14 21:57 编辑

dlpg070 发表于 2019-2-14 15:11
可以进一步化简:
   a(n)=-1 + n + 2 Floor[(3 + n)/6]
供参考,


我们要的是方法!   

A047354:\(\D a(n)=\frac{7n-4*((n-1)\mod3)-7}{3}\)

A047360:\(\D a(n)=\frac{7n-4*((n-1)\mod3)-4}{3}\)

A047339:\(\D a(n)=\frac{7n-4*((n-1)\mod3)-1}{3}\)

A047364:\(\D a(n)=\frac{7n-4*((n-1)\mod3)+2}{3}\)

A047311:\(\D a(n)=\frac{7n-4*((n-1)\mod3)+5}{3}\)

A047275:\(\D a(n)=\frac{7n-4*((n+0)\mod3)-3}{3}\)

A047320:\(\D a(n)=\frac{7n-4*((n+1)\mod3)+1}{3}\)

A047361:\(\D a(n)=\frac{7n-3*((n-1)\mod4)-7}{4}\)

A047338:\(\D a(n)=\frac{7n-3*((n-1)\mod4)-3}{4}\)

A047362:\(\D a(n)=\frac{7n-3*((n-1)\mod4)+1}{4}\)

A047307:\(\D a(n)=\frac{7n-3*((n-1)\mod4)+5}{4}\)

A047279:\(\D a(n)=\frac{7n-3*((n+0)\mod4)-4}{4}\)

A047322:\(\D a(n)=\frac{7n-3*((n+1)\mod4)-1}{4}\)

A047312:\(\D a(n)=\frac{7n-3*((n+2)\mod4)+2}{4}\)
页: 1 2 3 4 [5] 6 7 8 9 10 11 12 13 14
查看完整版本: 数字串的通项公式