hujunhua 发表于 2011-9-18 01:58:42

为了用8#的画图研究,可以先作归一化处理

本帖最后由 hujunhua 于 2011-9-18 11:17 编辑

选择适当的长度和时间单位,使S=π,T=2π,可使得图像范围固定下来而不失一般性。设Va和Vb在此单位制下化为α和β。
这时a(τ)=cos(ατ), b(τ)=-cos(βτ),
c(τ)=a(τ)-b(τ)=cos(\alpha\tau)+cos(\beta\tau)=2cos({\alpha+\beta}/2)\tau·cos({\alpha-\beta}/2)\tau
c(τ)=0时相遇,即cos({\alpha±\beta}/2)\tau=0 ,得
|α±β|τ=(2k-1)π, 0<τ≤2π, (k∈N, 下同),即0<(2k-1)/|α±β|≤2
1≤k≤|α±β|+1/2
设|α+β|τ=(2k-1)π, 0<τ≤2π与|α-β|τ=(2k-1)π, 0<τ≤2π所得τ的两个解集有x个相同解,则相遇次数为

【|α+β|+1/2】+【|α-β|+1/2】-x
当α±β为正整数时,上式可化简为2α-x

如果不给出具体的数值,x的表达不是那么容易确定的。所以问题并不似9#和10#所想的那么简单。

hujunhua 发表于 2011-9-18 02:23:47

RE: 图解例1


按图中c(t)与时间轴的交点个数,知相遇次数n=10.
若按9#和10#的公式,n=α+β=8. 错误

wayne 发表于 2011-9-18 08:50:08

在局部区域 运用函数的单调性法则,然后连缀起来,我们可以确定,
在确定的区间内,两条锯齿波的 函数图像相交次数 跟 对应的两条余弦波的 函数图像的相交次数是一样的。
设原点是路程的中点,我们列方程:
S/2*cos(Va*t*π/S) = - S/2*cos(Vb*t*π/S)
解得:
|Va±Vb|t=(2k-1)S(k是正整数)
于是问题就转化为在 t属于 的区间内求上面方程的解的个数

好像跟hujunhua 老大是完全一致的,嘿嘿

hujunhua 发表于 2011-9-18 10:15:22

在局部区域 运用函数的单调性法则,然后连缀起来,我们可以确定,
在确定的区间内,两条锯齿波的 函数图像相交次数 跟 对应的两条余弦波的 函数图像的相交次数是一样的。
...
wayne 发表于 2011-9-18 08:50 http://bbs.emath.ac.cn/images/common/back.gif
曲线上的点的位置有多种表达方式,
1、弧长坐标系:在曲线上取一定点为原点,以其它点到原点的有向弧长s(t)作为坐标。
2、投影坐标系。比如,平面曲线,就用(x(t),y(t)).
当用投影坐标系时,若曲线方程F(x,y)=0可以转成单值函数y=f(x),那么单用x(t)就足以确定点的位置,因为x(t)与(x(t),y(t))一一对应。

本题中,由于不涉及曲线形状,一般都会使用s(t),但周期函数s(t)并不是基本初等函数,不方便软件绘图和理论分析。使用投影坐标系却可得到基本初等函数。

所以,确切地说,是用函数的单值性,而不是单调性。

056254628 发表于 2011-9-18 10:23:44

本帖最后由 056254628 于 2011-9-18 15:45 编辑

回复11楼,9#、10#确实漏算了一种情况。因为相遇不但是迎头相遇(第一种情况:两者路程和等于S的奇数倍),还包括从后面追上(第二种情况:两者路程相差S的奇数倍)。其中还有重复计算(既是第一种情况,也是第二种情况)
假设$V_a>=V_b$
第一种情况个数$n_1=[([(V_a+V_b)*T/S]+1)/2]$
第二种情况个数$n_2=[([(V_a-V_b)*T/S]+1)/2]$
第三种情况个数$n_3$:
    设$R=(V_a+v_b)/(V_a-V_b)$
    若R为无理数,那么$n_3=0$
    若R为有理数,假设=p/q(已为既约分数,若R为整数,q=1),若p或q为偶数,那么$n_3=0$;若p、q都为奇数,那么$n=[([/q]+1)/2]$
相遇总次数$n=n_1+n_2-n_3$
不知还有没有疏漏的地方,请大家指正。

hujunhua 发表于 2011-9-18 10:50:36

RE: 11#与13#的方程确是一致的

11#中得到方程可写为: |α±β|τ=(2k-1)π, 0<τ≤2π, (k∈N)

其中,α=Va·T/2S, β=Vb·T/2S, τ=2πt/T,代入后可化为13#的方程

|Va±Vb|t=(2k-1)S,t∈, k∈N

056254628 发表于 2011-9-18 11:26:08

本帖最后由 056254628 于 2011-9-18 15:44 编辑

根据15楼的计算公式:
设经过T时间,A走的路程为a个S,即a=Va*T/S,
            B走的路程为b个S,即b=Vb*T/S,
设R=(a+b)/(a-b)=p/q   (R为整数,q=1;R为无理数,可视q为无穷大)

那么n1=[/2]
    n2=[/2]
    n3=[([/q]+1)/2]      p、q 都为奇数
n3=0                                    p、q至少有一个为偶数
    n=n1+n2-n3
--------------------------------------------
比如a=10,b=6
那么,n1=8,n2=2,n3=0
n=8+2=10

056254628 发表于 2011-9-18 11:49:31

本帖最后由 056254628 于 2011-9-18 15:41 编辑

可以化简为:
n1=[(a+b+1)/2]
    n2=[(a-b+1)/2]
   n3=[(a-b+q)/(2q)]         p、q都为奇数
最后的答案就是:
设$a=V_a*T/S$,$b=V_b*T/S$
假设$a>b$
设R=(a+b)/(a-b)=p/q   (p、q互素;R为整数,q=1;R为无理数,可视q为无穷大)
那么 $n=[(a+b+1)/2]+[(a-b+1)/2]-[(a-b+q)/(2q)]*(pq mod 2)$
若a=b,则$n=[(a+b+1)/2]$
-----------------------------------

wayne 发表于 2011-9-18 18:09:08

15# 056254628
第三种情况咋回事,没明白...

wayne 发表于 2011-9-18 18:12:57

14# hujunhua
函数的单值性,不太理解,如图。


===============
是说两个函数的差 的单值性吗
页: 1 [2] 3 4 5 6
查看完整版本: 好久没来了,出道小学题