northwolves 发表于 2025-11-4 10:13:54

数列的通项公式

$y(1)=2,y(n)=\frac{\left(10 n^2-19 n-2\right) y(n-1)+1728 n^2-5024 n+3504}{10 n^2-59 n+94}$

前30项:
{2, 23, 671, 3671, 11903, 29399, 61343, 114071, 195071, 312983, 477599, 699863, 991871, 1366871, 1839263, 2424599, 3139583, 4002071, 5031071, 6246743, 7670399, 9324503, 11232671, 13419671, 15911423, 18734999, 21918623, 25491671, 29484671, 33929303}

nyy 发表于 2025-11-4 11:18:47

这么复杂,还是算了吧

王守恩 发表于 2025-11-4 12:41:16

RecurrenceTable[{y == 2, (45 - 39 n + 10 n^2) y == 208 - 1568 n + 1728 n^2 - (11 - n - 10 n^2) y}, y, {n, 40}]——质数是不可以有公式的。

{2, 23, 671, 3671, 11903, 29399, 61343, 114071, 195071, 312983, 477599, 699863, 991871, 1366871, 1839263, 2424599, 3139583, 4002071, 5031071, 6246743, 7670399, 9324503, 11232671,
13419671, 15911423, 18734999, 21918623, 25491671, 29484671, 33929303, 38858399, 44305943, 50307071, 56898071, 64116383, 72000599, 80590463, 89926871, 100051871, 111008663}

mathe 发表于 2025-11-4 16:21:32

通项不重要吧,不过这个数列为什么看上去都是整数?有什么背景吗?

northwolves 发表于 2025-11-4 16:51:30

本帖最后由 northwolves 于 2025-11-4 16:53 编辑

mathe 发表于 2025-11-4 16:21
通项不重要吧,不过这个数列为什么看上去都是整数?有什么背景吗?

$x$ 取这个数列,$768 n^4 + 48 n^2 x + x^2 $ 是一个平方数。

Table[{n, Values@FindInstance}, {n, 0,30}]

{{0, {{2, 2}}},{1,{{23,49}}},{2,{{671,769}}},{3,{{3671,3889}}},{4,{{11903,12289}}},{5,{{29399,30001}}},{6,{{61343,62209}}},{7,{{114071,115249}}},{8,{{195071,196609}}},{9,{{312983,314929}}},{10,{{477599,480001}}},{11,{{699863,702769}}},{12,{{991871,995329}}},{13,{{1366871,1370929}}},{14,{{1839263,1843969}}},{15,{{2424599,2430001}}},{16,{{3139583,3145729}}},{17,{{4002071,4009009}}},{18,{{5031071,5038849}}},{19,{{6246743,6255409}}},{20,{{7670399,7680001}}},{21,{{9324503,9335089}}},{22,{{11232671,11244289}}},{23,{{13419671,13432369}}},{24,{{15911423,15925249}}},{25,{{18734999,18750001}}},{26,{{21918623,21934849}}},{27,{{25491671,25509169}}},{28,{{29484671,29503489}}},{29,{{33929303,33949489}}},{30,{{38858399,38880001}}}}

northwolves 发表于 2025-11-4 16:57:10

5楼的数据并不是最小的x:

Table[{n, Values@Solve[]}, {n, 0, 20}]

{{0,{1,1}},{1,{23,49}},{2,{26,134}},{3,{11,259}},{4,{104,536}},{5,{110,790}},{6,{44,1036}},{7,{112,1456}},{8,{416,2144}},{9,{99,2331}},{10,{440,3160}},{11,{913,4169}},{12,{176,4144}},{13,{26,4706}},{14,{329,5719}},{15,{195,6405}},{16,{1664,8576}},{17,{2482,10234}},{18,{396,9324}},{19,{4598,14174}},{20,{1760,12640}}}

wayne 发表于 2025-11-4 17:04:49

ans = {2, 23, 671, 3671, 11903, 29399, 61343, 114071, 195071, 312983,
   477599, 699863, 991871, 1366871, 1839263, 2424599, 3139583,
   4002071, 5031071, 6246743, 7670399, 9324503, 11232671, 13419671,
   15911423, 18734999, 21918623, 25491671, 29484671, 33929303};
expr = FindGeneratingFunction;
{expr, SeriesCoefficient}
先得到生成函数$g(x)=\frac{3 x^5-38 x^4-526 x^3-576 x^2-13 x-2}{(x-1)^5}$,然后得到通项公式的新表达
\[a(n)=\begin{array}{cc}
\{ &
\begin{array}{cc}
48 (n-1)^4-24 (n-1)^2-1 & n>1 \\
2 & n=1 \\
\end{array}
\\
\end{array}\]

northwolves 发表于 2025-11-4 17:05:13

本帖最后由 northwolves 于 2025-11-4 17:07 编辑

$x_n=48*n^4 - 192*n^3 + 264*n^2 - 144*n + 23,   y_n=48 n^4+1 (n>1)$

northwolves 发表于 2025-11-4 17:11:25

$y^2=768 n^4 + 48 n^2 x + x^2 $ 的通解应该是有的吧?

northwolves 发表于 2025-11-4 17:40:16

Constant differences
The differences of order 4 in the difference table of depth 1 appear to become constant.
The next few terms would be 9335089, 11244289, 13432369, 15925249.

2    49   76938891228930001622091152491966093149294800017027699953291370929184396924300013145729400900950388496255409768000193350891124428913432369
47   72031208400177123220853040   81360118320165072222768292560375600   473040   586032   715728   86328010298401216560142459216550881909200   2188080
673240052809312144962083228320   36960   46752   57696   69792   83040   97440   112992   129696   147552   166560   186720   208032   230496   254112   278880
1727288040325184   6336   7488   8640    9792   10944   12096   13248   14400   15552    16704    17856    19008    20160    21312    22464    23616    24768
1153115211521152   1152   1152   1152    1152    1152    1152    1152    1152    1152   1152   1152   1152   1152   1152   1152   1152
页: [1] 2
查看完整版本: 数列的通项公式