求正方形的面积
可能是两组解吧 c=(13a+11b)/2(c-7a)(c-9b)=0 => ab=3/5
so |axb|=4/5
|(c-7a)x(c-9b)|=|34axb|=136/5
正方形边长:\(a\);底边长:\(2x\)
\(\cos{B}=\frac{6^2+x^2-a^2}{2\cdot6\cdot x}=\frac{13^2+(2x)^2-11^2}{2\cdot13\cdot2x}\)
\(\cos{C}=\frac{2^2+x^2-a^2}{2\cdot2\cdot x}=\frac{11^2+(2x)^2-13^2}{2\cdot11\cdot2x}\)
求方程组得:
\(a=\sqrt{\frac{136}{5}}\)
\(x=\sqrt{\frac{148}{5}}\)
正方形面积:\(s=136/5=27.2\)
补充内容 (2025-12-5 15:53):
各变量参考 5# 的图 如图所示:
\(S_{DBF}\) 绕 D 点逆时针旋转 \(90\degree\) 得 \(S_{DGH}\);\(S_{FCE}\) 绕 E 点顺时针旋转 \(90\degree\) 得 \(S_{HGE}\);
\(S=S_{\Delta ABC}\)
\(=\frac{(6+7)(9+2)}{2}\sin{A}=\frac{143}{2}\sin{A}\)
\(=\frac{(6+7)(2x)}{2}\sin{B}=13x\sin{B}\)
\(=\frac{(2+9)(2x)}{2}\sin{C}=11x\sin{C}\)
\(S_{\Delta EAD}=\frac{7\cdot9}{2}\sin{A}=\frac{63}{143}S\)
\(S_{\Delta DBF}=\frac{6x}{2}\sin{B}=\frac{3}{13}S\)
\(S_{\Delta FCE}=\frac{2x}{2}\sin{C}=\frac{1}{11}S\)
\(S_{DFEH}=a^2\)
\(=2(S-S_{\Delta EAD}-S_{\Delta DBF}-S_{\Delta FCE})=2(S-\frac{63}{143}S-\frac{3}{13}S-\frac{x}{11}S)=\frac{68}{143}S\)
\(S_{ADHE}=S_{\Delta EAD}-\frac{a^2}{2}=\frac{63}{143}S-\frac{34}{143}S=\frac{29}{143}S\)
\(S_{ADGE}=S_{ADHE}+S_{\Delta DBF}+S_{\Delta FCE}=\frac{29}{143}S+\frac{3}{13}S+\frac{1}{11}S=\frac{75}{143}S\)
\(S_{ADGE}=S_{\Delta ADG}+S_{\Delta AEG}=\frac{6\cdot7}{2}+\frac{2\cdot9}{2}=30\)
\(\frac{75}{143}S=30\rightarrow S=\frac{286}{5}\)
\(S_{DFEH}=a^2=\frac{68}{143}S=\frac{136}{5}\) 【托勒密定理】
\(AG=\sqrt{6^2+7^2}=\sqrt{2^2+9^2}=\sqrt{85}\)
\(2\cdot7+6\cdot9=\sqrt{85}\cdot\sqrt{2}a\)
\(a=\frac{68}{\sqrt{170}}\rightarrow s=a^2=\frac{136}{5}\) Jack315 发表于 2025-12-5 15:52
如图所示:
\(S_{DBF}\) 绕 D 点逆时针旋转 \(90\degree\) 得 \(S_{DGH}\);\(S_{FCE}\) 绕 E 点顺时针旋 ...
G点是否在EF上,我从图片上看是好像不在 nyy 发表于 2025-12-7 08:56
G点是否在EF上,我从图片上看是好像不在
Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
deg=Pi/180;(*角度制下1°所对应的弧度*)
(*子函数,利用三边计算角的余弦值,角是c边所对的角*)
cs:=((a^2+b^2-c^2)/(2*a*b))
rule={
eq1->(ArcCos@cs+ArcCos@cs==90deg),
eq2->(ArcCos@cs+ArcCos@cs*a,7,9]==135deg)
}
ContourPlot[{ArcCos@cs+ArcCos@cs==90deg,
ArcCos@cs+ArcCos@cs*a,7,9]==135deg},{a,-10,10},{x,-10,10}]
aa=FindRoot[{eq1,eq2}/.rule,{{a,4.0},{x,4.0}}]
bb=RootApproximant[{a,x}/.aa]
求解结果
\[\left\{2 \sqrt{\frac{34}{5}},2 \sqrt{\frac{37}{5}}\right\}\]
第一个结果是正方形边长,第二个是三角形边长的一半 Jack315 发表于 2025-12-5 00:30
正方形边长:\(a\);底边长:\(2x\)
\(\cos{B}=\frac{6^2+x^2-a^2}{2\cdot6\cdot x}=\frac{13^2+(2x)^2-11^ ...
Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
(*子函数,利用三边计算角的余弦值,角是c边所对的角*)
cs:=((a^2+b^2-c^2)/(2*a*b))
ans=Solve[{
cs==cs,
cs==cs
},{a,x}]//Simplify
Grid(*列表显示*)
用你的办法
求解结果
\[\begin{array}{ll}
a\to -2 \sqrt{\frac{34}{5}} & x\to -2 \sqrt{\frac{37}{5}} \\
a\to -2 \sqrt{\frac{34}{5}} & x\to 2 \sqrt{\frac{37}{5}} \\
a\to 2 \sqrt{\frac{34}{5}} & x\to -2 \sqrt{\frac{37}{5}} \\
a\to 2 \sqrt{\frac{34}{5}} & x\to 2 \sqrt{\frac{37}{5}} \\
\end{array}\]
Solve[{13/Sin == 11/Sin == (2 y)/Sin, 6/Cos == Sqrt/Sin, 2/Sin == y/Sin == Sqrt/Sin, Pi/2 > a > 0, Pi/2 > b > 0, Pi/2 > c > 0, x > 0}, {a, b, c, x, y}]// FullSimplify
{{a -> 2 ArcTan)], b -> 2 ArcTan)], c -> 2 ArcCot)], x -> 136/5, y -> 2 Sqrt}}
页:
[1]
2