y := int(sin(theta)*cos(-arccos((1/6)*sqrt(1-cos(theta)^2/(1+2*cos(theta))^2)*(2+cos(theta))*sqrt(6)/(sqrt(1/(1+2*cos(theta)))*(1+cos(theta))))+int((1/36)*sqrt(6)*(2*sqrt(6)*sqrt((9*cos(theta)^3+15*cos(theta)^2+10*cos(theta)+2)/(2*cos(theta)^2+3*cos(theta)+1))*sqrt(3*cos(theta)^2+4*cos(theta)+1)*cos(theta)+sqrt(6)*sqrt((9*cos(theta)^3+15*cos(theta)^2+10*cos(theta)+2)/(2*cos(theta)^2+3*cos(theta)+1))*sqrt(3*cos(theta)^2+4*cos(theta)+1)-sin(theta)*sqrt(-(18*cos(theta)^3+6*cos(theta)^2-12*cos(theta)-12)/(2*cos(theta)^2+3*cos(theta)+1)))/(sqrt(3*cos(theta)^2+4*cos(theta)+1)*sqrt(1/(1+2*cos(theta)))*(2*cos(theta)^2+3*cos(theta)+1)), theta))/(sqrt(3*cos(theta)^2+4*cos(theta)+1)*(1+2*cos(theta))), theta)
想不到方程更简洁的表示了…… 这个困难问题怎么不火啊 倪举鹏 发表于 2014-7-1 17:17
这个困难问题怎么不火啊
一是很少有人关注,二是这个问题真的很难 倪举鹏 发表于 2014-7-1 17:17
这个困难问题怎么不火啊
这个题目非常有趣,而且的确很难。
我反正是一时没有想法,而且几乎忘记了我曾经对这题感兴趣了 s := dsolve({(1/36)*sqrt(6)*(2*sqrt(6)*sqrt((9*cos(theta)^3+15*cos(theta)^2+10*cos(theta)+2)/(2*cos(theta)^2+3*cos(theta)+1))*sqrt(3*cos(theta)^2+4*cos(theta)+1)*cos(theta)+sqrt(6)*sqrt((9*cos(theta)^3+15*cos(theta)^2+10*cos(theta)+2)/(2*cos(theta)^2+3*cos(theta)+1))*sqrt(3*cos(theta)^2+4*cos(theta)+1)-sin(theta)*sqrt(-(18*cos(theta)^3+6*cos(theta)^2-12*cos(theta)-12)/(2*cos(theta)^2+3*cos(theta)+1)))/(sqrt(3*cos(theta)^2+4*cos(theta)+1)*sqrt(1/(1+2*cos(theta)))*(2*cos(theta)^2+3*cos(theta)+1)) = (D(k))(theta), k(0) = 0, x(0) = 0, y(0) = 0, (D(x))(theta) = -sin(theta)*sin(-arccos((1/6)*sqrt(1-cos(theta)^2/(1+2*cos(theta))^2)*(2+cos(theta))*sqrt(6)/(sqrt(1/(1+2*cos(theta)))*(1+cos(theta))))+k(theta))/(sqrt(3*cos(theta)^2+4*cos(theta)+1)*(1+2*cos(theta))), (D(y))(theta) = sin(theta)*cos(-arccos((1/6)*sqrt(1-cos(theta)^2/(1+2*cos(theta))^2)*(2+cos(theta))*sqrt(6)/(sqrt(1/(1+2*cos(theta)))*(1+cos(theta))))+k(theta))/(sqrt(3*cos(theta)^2+4*cos(theta)+1)*(1+2*cos(theta)))}, {k(theta), x(theta), y(theta)}, numeric);
print(outputredirected...); # input placeholder
proc(x_rkf45) ... end;
s(1.9106);
print(outputredirected...); # input placeholder
[theta = 1.9106, k(theta) = HFloat(0.008396269066916085),
x(theta) = HFloat(1.0790492896250343),
y(theta) = HFloat(1.2949603345514877)]
s(1.9);
print(outputredirected...); # input placeholder
[theta = 1.9, k(theta) = HFloat(0.1459008353432432),
x(theta) = HFloat(0.6974249724255157),
y(theta) = HFloat(1.2147960021472228)]
得到一个三元微分方程组,可以解数值解,我不会用maple画微分方程组参数解x(theta),y(theta)的图 题目看不懂,是如何滚动,哪个点的轨迹? mathe 发表于 2015-3-3 17:42
题目看不懂,是如何滚动,哪个点的轨迹?
以竖着硬币和平面的切点为原点,整体朝x轴正方向滚动,开始竖着硬币的轨迹方程是上面的参数方程x(theta),y(theta) 可以QQ发maple你 好帖啊!顶起来啊啊 啊啊啊啊啊啊啊啊
页:
1
[2]