mathematica
发表于 2021-1-19 08:54:10
本帖最后由 mathematica 于 2021-1-19 12:37 编辑
Clear["Global`*"];
ans=FullSimplify@Solve[{
AC^2+1^2==AP^2,(*勾股定理*)
AC^2+(1+3)^2==AB^2,(*勾股定理*)
cosAPC==1/AP,(*余弦定义*)
cosB==4/AB,(*余弦定义*)
cosAPC==4*cosB^3-3*cosB,(*三倍角公式*)
AC>=0&&AP>=0&&AB>=0(*限制变量范围*)
},{AC,AP,AB,cosAPC,cosB}];
aaa=Grid
求解结果:
\[\begin{array}{ccccc}
\text{AC}\to 0 & \text{AP}\to 1 & \text{AB}\to 4 & \text{cosAPC}\to 1 & \text{cosB}\to 1 \\
\text{AC}\to \frac{4}{\sqrt{11}} & \text{AP}\to 3 \sqrt{\frac{3}{11}} & \text{AB}\to 8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to \frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to \frac{\sqrt{\frac{11}{3}}}{2} \\
\end{array}\]
Clear["Global`*"];
ans=FullSimplify@Solve[{
AC^2+1^2==AP^2,(*勾股定理*)
AC^2+(1+3)^2==AB^2,(*勾股定理*)
cosAPC==1/AP,(*余弦定义*)
cosB==4/AB,(*余弦定义*)
cosAPC==4*cosB^3-3*cosB(*三倍角公式*)
},{AC,AP,AB,cosAPC,cosB}];
aaa=Grid
\[\begin{array}{lllll}
\text{AC}\to 0 & \text{AP}\to -1 & \text{AB}\to -4 & \text{cosAPC}\to -1 & \text{cosB}\to -1 \\
\text{AC}\to 0 & \text{AP}\to 1 & \text{AB}\to 4 & \text{cosAPC}\to 1 & \text{cosB}\to 1 \\
\text{AC}\to -4 \sqrt{\frac{7}{13}} & \text{AP}\to 5 \sqrt{\frac{5}{13}} & \text{AB}\to -8 \sqrt{\frac{5}{13}} & \text{cosAPC}\to \frac{\sqrt{\frac{13}{5}}}{5} & \text{cosB}\to -\frac{\sqrt{\frac{13}{5}}}{2} \\
\text{AC}\to 4 \sqrt{\frac{7}{13}} & \text{AP}\to 5 \sqrt{\frac{5}{13}} & \text{AB}\to -8 \sqrt{\frac{5}{13}} & \text{cosAPC}\to \frac{\sqrt{\frac{13}{5}}}{5} & \text{cosB}\to -\frac{\sqrt{\frac{13}{5}}}{2} \\
\text{AC}\to -4 \sqrt{\frac{7}{13}} & \text{AP}\to -5 \sqrt{\frac{5}{13}} & \text{AB}\to 8 \sqrt{\frac{5}{13}} & \text{cosAPC}\to -\frac{\sqrt{\frac{13}{5}}}{5} & \text{cosB}\to \frac{\sqrt{\frac{13}{5}}}{2} \\
\text{AC}\to 4 \sqrt{\frac{7}{13}} & \text{AP}\to -5 \sqrt{\frac{5}{13}} & \text{AB}\to 8 \sqrt{\frac{5}{13}} & \text{cosAPC}\to -\frac{\sqrt{\frac{13}{5}}}{5} & \text{cosB}\to \frac{\sqrt{\frac{13}{5}}}{2} \\
\text{AC}\to -\frac{4}{\sqrt{11}} & \text{AP}\to -3 \sqrt{\frac{3}{11}} & \text{AB}\to -8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to -\frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to -\frac{\sqrt{\frac{11}{3}}}{2} \\
\text{AC}\to \frac{4}{\sqrt{11}} & \text{AP}\to -3 \sqrt{\frac{3}{11}} & \text{AB}\to -8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to -\frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to -\frac{\sqrt{\frac{11}{3}}}{2} \\
\text{AC}\to -\frac{4}{\sqrt{11}} & \text{AP}\to 3 \sqrt{\frac{3}{11}} & \text{AB}\to 8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to \frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to \frac{\sqrt{\frac{11}{3}}}{2} \\
\text{AC}\to \frac{4}{\sqrt{11}} & \text{AP}\to 3 \sqrt{\frac{3}{11}} & \text{AB}\to 8 \sqrt{\frac{3}{11}} & \text{cosAPC}\to \frac{\sqrt{\frac{11}{3}}}{3} & \text{cosB}\to \frac{\sqrt{\frac{11}{3}}}{2} \\
\end{array}\]
mathematica
发表于 2021-1-19 14:20:35
mathematica 发表于 2021-1-19 08:54
求解结果:
\[\begin{array}{ccccc}
\text{AC}\to 0 & \text{AP}\to 1 & \text{AB}\to 4 & \text{cos ...
Clear["Global`*"];
ans=FullSimplify@Solve&&AC==4*Tan&&0<=B<Pi/2,{AC,B}]
求解结果
\[{{AC->0,B->0},{AC->4/Sqrt,B->2 ArcCot+Sqrt]}}\]
mathematica
发表于 2021-1-21 16:10:50
本帖最后由 mathematica 于 2021-1-21 16:11 编辑
假设题目修改成
Rt△ABC中∠C=90°,P在BC上满足PB=5,PC=1,∠APC=5∠B,求AC的长.
那么这个题目就有点难度了,用辅助线应该很难解决了!
Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
ans=Solve==5*ArcTan,{x}]
求解结果
\[\left\{\{x\to 0\},\left\{x\to -6 \sqrt{\frac{25}{29}-\frac{2 \sqrt{149}}{29}}\right\},\left\{x\to 6 \sqrt{\frac{25}{29}-\frac{2 \sqrt{149}}{29}}\right\}\right\}\]
数值化结果
\[\{\{x\to 0.\},\{x\to -0.853552\},\{x\to 0.853552\}\}\]