数学星空
发表于 2014-11-30 15:38:34
对于特殊可根式求解的方程:
见http://zh.wikipedia.org/wiki/%E4%BA%94%E6%AC%A1%E6%96%B9%E7%A8%8B 中型式4
\(a^2x^5+5abx^3+5b^2x+c=0\)
取\(a=b=c=1\)
得到:
\(x^5+5x^3+5x+1=0\)
解之:
\(x_1=0.1559639295433540521196832796904686288242273398290129216821808037620692303700549313834412509453156576+1.181019123792378205433228616184661918616551598007594103004162320449122232417972498251126833898065897I\),
\(x_2=-0.5957292006656738112189120610147469683674101959031697365561514944086545225853646312659449103227157650e-1+1.910929083659687548304409767344815955689237637688022354420319496458040714839822683276874096501736738I\),
\(x_3=-0.1927820189535733419955841471779878639749726404773918960531313086424075562230369365136935198260881623\),
\(x_4= -0.5957292006656738112189120610147469683674101959031697365561514944086545225853646312659449103227157650e-1-1.910929083659687548304409767344815955689237637688022354420319496458040714839822683276874096501736738I\),
\(x_5=0.1559639295433540521196832796904686288242273398290129216821808037620692303700549313834412509453156576-1.181019123792378205433228616184661918616551598007594103004162320449122232417972498251126833898065897I\)
代入:
\(A_1=x_1^2(x_2x_5+x_3x_4)+x_2^2(x_1x_3+x_4x_5)+x_3^2(x_1x_5+x_2x_4)+x_4^2(x_1x_2+x_3x_5)+x_5^2(x_1x_4+x_2x_3)\)
\(A_2=x_2^2(x_1x_5+x_3x_4)+x_1^2(x_2x_3+x_4x_5)+x_3^2(x_1x_4+x_2x_5)+x_4^2(x_1x_2+x_3x_5)+x_5^2(x_1x_3+x_2x_4)\)
\(A_3=x_3^2(x_1x_4+x_2x_5)+x_2^2(x_1x_3+x_4x_5)+x_1^2(x_2x_4+x_3x_5)+x_4^2(x_1x_5+x_2x_3)+x_5^2(x_1x_2+x_3x_4)\)
\(A_4=x_4^2(x_1x_3+x_2x_5)+x_2^2(x_1x_5+x_3x_4)+x_3^2(x_1x_2+x_4x_5)+x_1^2(x_2x_4+x_3x_5)+x_5^2(x_1x_4+x_2x_3)\)
\(A_5=x_5^2(x_1x_2+x_3x_4)+x_2^2(x_1x_4+x_3x_5)+x_3^2(x_1x_5+x_2x_4)+x_4^2(x_1x_3+x_2x_5)+x_1^2(x_2x_3+x_4x_5)\)
\(A_6=x_1^2(x_2x_5+x_3x_4)+x_5^2(x_1x_3+x_2x_4)+x_3^2(x_1x_2+x_4x_5)+x_4^2(x_1x_5+x_2x_3)+x_2^2(x_1x_4+x_3x_5)\)
得到:
\(A_1=9.999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999991-1. 10^{-100} I=10 ?? \)
这就说明了可根式解?
数学星空
发表于 2014-11-30 17:05:28
关于首1整系数的五次方程是否有求根公式已通过了下面几个例子验证:
1. \(x^5+x^4-28x^3+37x^2+25x+1=0\)
2. \(x^5+x^4-24x^3-17x^2+41x-13=0\)
3. \(x^5+x^4-16x^3+5x^2+21x-9=0\)
4. \(x^5+x^4-12x^3-21x^2+x+5=0\)
5. \(x^5+x^4-4x^3-3x^2+3x+1=0\)
6. \( x^5-20x^3+170x+208=0\)
7.\( x^5+110(5x^3+20x^2-360x+800)=0\)
8. \(x^5-50x^3-600x^2-2000x-11200=0\)
9. \( x^5-40x^3+160x^2+1000x-5888=0\)
10.\(x^5-20x^3-80x^2-150x-656=0\)
11. \(x^5+110(5x^3+60x^2+800x+8320)=0\)
12.\(x^5-20x^3+250x-400=0\)
但是关于首1系数为分数的代数方程如何验算?还未弄明白
例如:下面例子
1.\(x^5+(625/4)x+3750=0\)
2.\(x^5-(22/5)x^3-(11/25)x^2+(462/125)x+979/3125=0\)
3. \( x^5-5x^3+(85/8)x-13/2=0\)
4. \( x^5+(20/17)x+21/17=0\)
5.\(x^5-(4/13)x+29/65=0\)
6.\( x^5+(10/13)x+3/13=0\)
无心人
发表于 2014-11-30 22:12:21
第一个好像有个实根
数学星空
发表于 2014-12-2 21:50:45
TOscience123:
你的结论存在一个很明显的错误:
任何一个五次方程可以化为缺4次项的方程,这句话没问题
但是\(x^5+a_1 x^3+a_2 x^2+a_3 x+a_4=(x^3+bx+c)(x^2+f)\)
成立的条件为:\(a_1 = \frac{a_3 a_2}{a_4}+\frac{a_4}{a_2}\)这个结果直接展开上面方程对应系数相等即可得到
即\(x^5+a_1 x^3+a_2 x^2+a_3 x+a_4=(x^3+\frac{a_2 a_3}{a_4}x+a_2)(x^2+\frac{a_4}{a_2})\)
若条件成立:直接可以求解,一个三次方程和二次方程
若不成立,是无法分解成\((x^3+bx+c)(x^2+f)\)
再次强调对于一般的五次方程是不存在根式解的,除非使用超椭圆函数,具体可见8#的相关资料及9#结果
数学星空
发表于 2014-12-2 22:11:44
为了便于网友使用软件将一般五次方程
x^5+x^4*a+x^3*a+x^2*a+x*a+a=0 (1)
简化为X^5+U*X+V=0 (2)
我将具体结果和步骤粘贴过来
---------------------------------------
作代换:x = y-(1/5)*a(3)
则(1)变成 y^5+a*y^3+b*y^2+c*y+d=0(4)
其中 (5)
a = -(2/5)*a^2+a,
b = (4/25)*a^3-(3/5)*a*a+a,
c = -(3/125)*a^4+(3/25)*a*a^2-(2/5)*a*a+a,
d = (4/3125)*a^5-(1/125)*a*a^3+(1/25)*a*a^2-(1/5)*a*a+a
-----------------------------------------
然后(4)与 z-p*y-y^2-q=0 (6)
其中(7)
p = (1/10)*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))/a,
q = (2/5)*a
------------------------------------------
消元得到:
z^5+A*z^2+B*z+C=0(8)
其中: (9)
A = -(3/250)*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^2+(1/1000)*b*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^3/a^3+(2/25)*a^3-(13/50)*b*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))+(1/25)*c*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^2/a^2-(2/5)*a*c-b^2+(1/2)*d*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))/a,
B = (3/625)*a*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^2-(1/1250)*b*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^3/a^2+(1/10000)*c*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^4/a^4+(12/125)*a^4+(8/125)*a*b*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))-(11/500)*c*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^2/a+(1/200)*d*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^3/a^3-(16/25)*a^2*c-(1/10)*d*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))+(4/5)*b^2*a-(1/10)*b*c*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))/a-2*b*d+c^2,
C = -(2/3125)*a^2*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^2+(1/6250)*b*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^3/a-(1/25000)*c*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^4/a^3+(1/100000)*d*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^5/a^5-(72/3125)*a^5-(2/625)*a^2*b*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))+(3/1250)*c*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^2-(1/1000)*d*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^3/a^2+(24/125)*a^3*c-(1/25)*a*d*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))-(4/25)*b^2*a^2+(1/25)*b*c*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))-(1/100)*b*d*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))^2/a^2+(4/5)*b*d*a-(2/5)*c^2*a+(1/10)*c*d*(-15*b+sqrt(60*a^3-200*a*c+225*b^2))/a-d^2
---------------------------------------------------------------------------------------------------------------
最后将(8)与 X-z^4-z^3*b-z^2*b-z*b-b=0 (10)
其中:(11)
(-27*A^4-300*A*B*C+160*B^3)*b^2+(-27*A^3*B-375*A*C^2+400*B^2*C)*b+45*A^3*C-18*A^2*B^2+250*B*C^2=0
b+(4*B*b+5*C)/(3*A)=0
b-(3*A*b+4*B)*(1/5)=0
675*A^3*b^3+(-2025*A^4+3375*A^2*C*b-3600*A*B^2*b-4500*A*B*C)*b^2+(675*A^3*B*b^2+2025*A^5-4050*A^3*C*b+7200*A^2*B^2*b+6000*B^2*C*b^2+9675*A^2*B*C+15000*B*C^2*b+9375*C^3)*b-54*A^5*b^3-756*A^4*B*b^2-225*B*C*b^3*A^2-320*A*B^3*b^3-675*A^6+1485*A^4*C*b-3843*A^3*B^2*b-1125*C^2*b^2*A^2-3900*A*B^2*C*b^2-960*B^4*b^2-4770*A^3*B*C-108*A^2*B^3-9375*A*B*C^2*b-2400*B^3*C*b-6250*A*C^3-1500*B^2*C^2=0
-----------------------------------------------------------------------------------------------------------------
消元得到结果:X^5+U*X+V=0 (12)
其中:(13)
-37665*A^5*B^2*C-178200*A^3*B^3*C*b^2+88000*A*B^4*C*b^4+290000*A*B^3*C^2*b^3+262500*A*B^2*C^3*b^2-15625*A*B*C^4*b-288000*A^3*B^2*C^2*b+25200*A^2*B^4*C*b-90000*A^2*B^2*C^2*b^4-225000*A^2*B*C^3*b^3-19575*A^5*B*C*b^4-78435*A^6*B*C*b+56700*B^2*C*b^3*A^4+121500*B*C^2*b^2*A^4-250000*B^3*C^3*b-3969*A^7*B*b^3-10125*B*b^4*A^4+9495*B^3*b^4*A^4-29280*A^3*B^4*b^3+10080*A^2*B^5*b^2+15750*A^2*B^3*C^2-138750*A^3*B*C^3-140625*A^2*C^4*b^2-160000*B^5*C*b^3-300000*B^4*C^2*b^2-50868*A^6*B^2*b^2+37665*A^7*C*b^2-57375*A^5*C^2*b^3-31671*A^5*B^3*b+73125*C^3*b*A^4-54000*A^6*C^2+243*B^4*A^4+10125*U*A^4-972*A^8*b^4-12150*A^9*b-16200*A^8*B-32000*B^6*b^4-78125*B^2*C^4-78125*A*C^5+(12150*A^6*b+46575*A^5*B+67500*A^3*B*C*b+84375*A^3*C^2)*b^3+(-36450*A^7*b+30375*A^5*C*b^2-44550*A^4*B^2*b^2-78975*A^6*B-202500*A^4*B*C*b-32400*A^3*B^3*b-202500*A^4*C^2-40500*A^3*B^2*C)*b^2+(2025*A^6*B*b^3+36450*A^8*b-72900*A^6*C*b^2+95175*A^5*B^2*b^2+50625*A^4*C^2*b^3-94500*A^3*B^2*C*b^3+48000*A^2*B^4*b^3+58725*A^7*B+208575*A^5*B*C*b+64800*A^4*B^3*b-185625*A^3*B*C^2*b^2+180000*A^2*B^3*C*b^2+172125*A^5*C^2+76950*A^4*B^2*C-84375*A^3*C^3*b+225000*A^2*B^2*C^2*b+93750*A^2*B*C^3)*b=0
-62500000*B^2*C^5*b^2+135000*A^3*B^4*C^2-3200000*B^5*C^2*b^5-785700*A^6*B^3*C+86400*A^3*B^6*b^2-9765625*C^7+1597725*A^8*B*C*b^2+3193425*A^7*B^2*C*b-7155000*A^5*B^2*C^2*b^2+8808750*A^4*B^3*C^2*b-6115500*A^6*B^2*C*b^4-11593125*A^6*B*C^2*b^3-729000*A^5*B^3*C*b^3+1687500*A^4*B^2*C^2*b^5+421875*A^4*B*C^3*b^4+9342000*A^4*B^4*C*b^2-18450000*A^3*B^3*C^2*b^4-38812500*A^3*B^2*C^3*b^3-41484375*A^3*B*C^4*b^2-303750*A^7*B*C*b^5+216000*A^3*B^5*C*b-7500000*A^2*B^4*C^2*b^3-18000000*A^2*B^3*C^3*b^2-12421875*A^2*B^2*C^4*b-3960000*A^3*B^4*C*b^5+1920000*A^2*B^5*C*b^4+9600000*A*B^6*C*b^3+18000000*A*B^5*C^2*b^2+15000000*A*B^4*C^3*b+1012500*B*C^3*b*A^5-644355*A^6*B^4*b-2343750*A^2*B*C^5-17578125*A^3*C^5*b-225990*A^9*B*b^4+3146400*A^4*B^5*b^3+3240000*A^7*B*C^2-929475*A^9*C*b^3+4687500*A*B^3*C^4+2559375*A^4*B^2*C^3+181035*A^8*B^2*b^3+1440000*A^2*B^6*b^5+2430000*A^8*C^2*b-50000000*B^3*C^4*b^3-5062500*A^6*C^3*b^2-759375*C*b^5*A^5+1920000*A*B^7*b^4+26325*A^6*B^3*b^5+117855*A^7*B^3*b^2+2346300*A^5*B^4*b^4+759375*A^7*C^2*b^4-39062500*B*C^6*b+729000*A^10*B*b-2109375*A^4*C^4*b^3-20000000*B^4*C^3*b^4-759375*C^3*b^5*A^5+(455625*A^6*B*b+2278125*A^6*C+607500*A^5*B^2)*b^4+(-273375*A^8*b^2-2095875*A^7*B*b-1518750*A^5*B*C*b^2-2278125*A^7*C-2308500*A^6*B^2-3796875*A^5*C^2*b)*b^3+(820125*A^9*b^2-759375*A^7*C*b^3+546750*A^6*B^2*b^3+3553875*A^8*B*b+5315625*A^6*B*C*b^2+243000*A^5*B^3*b^2-5062500*A^4*B*C^2*b^3+3600000*A^3*B^3*C*b^3+759375*A^8*C+3280500*A^7*B^2+10631250*A^6*C^2*b+3442500*A^5*B^2*C*b-648000*A^4*B^4*b-6328125*A^4*C^3*b^2+13500000*A^3*B^2*C^2*b^2+3543750*A^5*B*C^2-810000*A^4*B^3*C+16875000*A^3*B*C^3*b+7031250*A^3*C^4)*b^2+(182250*A^8*B*b^4-820125*A^10*b^2+1640250*A^8*C*b^3-759375*A^7*B^2*b^3-759375*A^6*C^2*b^4+4910625*A^5*B^2*C*b^4-2160000*A^4*B^4*b^4-2642625*A^9*B*b-5467500*A^7*B*C*b^2-364500*A^6*B^3*b^2+15440625*A^5*B*C^2*b^3-4050000*A^4*B^3*C*b^3-2880000*A^3*B^5*b^3+9000000*A^2*B^3*C^2*b^4-2400000*A*B^5*C*b^4-2065500*A^8*B^2-9264375*A^7*C^2*b-6672375*A^6*B^2*C*b+1296000*A^5*B^4*b+11390625*A^5*C^3*b^2-9112500*A^4*B^2*C^2*b^2-9180000*A^3*B^4*C*b^2+33750000*A^2*B^2*C^3*b^3-12000000*A*B^4*C^2*b^3-6783750*A^6*B*C^2+1589625*A^5*B^3*C-19406250*A^4*B*C^3*b-9450000*A^3*B^3*C^2*b+42187500*A^2*B*C^4*b^2-22500000*A*B^3*C^3*b^2-12656250*A^4*C^4-3093750*A^3*B^2*C^3+17578125*A^2*C^5*b-18750000*A*B^2*C^4*b-5859375*A*B*C^5)*b+5400000*C^4*A^5+759375*V*A^5-17496*A^10*b^5+972*A^5*B^5+273375*A^11*b^2+486000*A^9*B^2=0
上面的结果与http://zh.wikipedia.org/wiki/%E4%BA%94%E6%AC%A1%E6%96%B9%E7%A8%8B的过程及结果一致,有兴趣大家可以直接复制后验算一遍。
数学星空
发表于 2014-12-4 20:28:47
对于问题4,网友 God->Osiris 给出一个有趣的例子:
http://bbs.emath.ac.cn/forum.php ... 18&fromuid=1455
我现在来验证一下:
\(32x^5+3349456x^4-5941616812296x^3-585145514845851080x^2+147013447513276833423286x+15377302441624829616294559439=0\) (1)
的实根为:(为了区别特将实根x记为y)
\(y=\frac{\sqrt{-11(-1451316\cos(2\theta))+69291\cos(4\theta)+149151\cos(6\theta)-486583cos(8\theta)-581326cos(10\theta))^2+19812679276093}}{11}\) (2)
\(y=\sqrt{\frac{-(-297638912t^{10}+681814656t^8-521747040t^6+148072200t^4-14267886t^2+1466199)^2+1801152661463}{11}}\) (2')
其中:
\(\theta=\frac{\pi}{11}\) (3)
由下面方程:
\(t^{11}-1=(t-1)(32t^5+16t^4-32t^3-12t^2+6t+1)^2\) (4)
知\(t=cos(\theta)\)是下面方程的根
\(32t^5+16t^4-32t^3-12t^2+6t+1=0\) (5)
又由(2')变形得:
\((-297638912t^{10}+681814656t^8-521747040t^6+148072200t^4-14267886t^2+1466199)^2+11y^2-1801152661463=0\) (6)
然后将(6)与(5)消元t,得到:
\(199371481266949778652778855399424(32y^5+3349456y^4-5941616812296y^3-585145514845851080y^2+147013447513276833423286y+15377302441624829616294559439)(32y^5-3349456y^4-5941616812296y^3+585145514845851080y^2+147013447513276833423286y-15377302441624829616294559439)=0\) (7)
由于(7)中有一个因式
\(32y^5+3349456y^4-5941616812296y^3-585145514845851080y^2+147013447513276833423286y+15377302441624829616294559439=0\) (8)
(8)与(1)为同一个方程,即可说明 'x=y'即
\(x=\frac{\sqrt{-11(-1451316\cos(2\theta))+69291\cos(4\theta)+149151\cos(6\theta)-486583cos(8\theta)-581326cos(10\theta))^2+19812679276093}}{11}\)(9)
liangbch
发表于 2014-12-10 11:58:14
楼上能否学学Latex语法,将上面的贴图改成公式。贴图会导致论坛空间消耗的很快,而且网页刷新也慢。
liangbch
发表于 2014-12-10 13:00:59
20楼的转为Latex格式
$X^3+X^2-x+1=0$
这是我解出的一个根
${(3^{3/2}\sqrt{11}-19)^{2/3}-(3^{3/2}\sqrt{11}-19)^{1/3}+4}/{3(3^{3/2}\sqrt{11}-19)^{1/3}}$
这是一个根
$x=({\sqrt{11}}/{3^{3/2}}-19/27)^{1/3}+{4}/(9({\sqrt{11}}/{3^{3/2}}-19/27)^{1/3})-1/3$
这个方程有一个实根,两个虚根。
如果不用序数i来表达虚根?
用我推到的解方程公式完全可以办到。
mathe
发表于 2014-12-10 17:11:47
如果根的判别式是负的(三个实根),还是会出现对负数开平方的,也就是需要用虚数来表示了
数学星空
发表于 2014-12-10 22:57:55
关\(x^3+x^2-x+1=0\)的根很容易求解:
其中实根为:
\(x_0=-\frac{(19+3\sqrt{33})^{\frac{1}{3}}}{3}-\frac{4}{3(19+3\sqrt{33})^{\frac{1}{3}}}-\frac{1}{3}=-1.8392867552141611325\)
22#给出的两个根为虚根,且相等\(x_1=x_2\)
$x_1={(3^{3/2}\sqrt{11}-19)^{2/3}-(3^{3/2}\sqrt{11}-19)^{1/3}+4}/{3(3^{3/2}\sqrt{11}-19)^{1/3}}=0.41964337760708056626-0.60629072920719936909I$
$x_2=({\sqrt{11}}/{3^{3/2}}-19/27)^{1/3}+{4}/(9({\sqrt{11}}/{3^{3/2}}-19/27)^{1/3})-1/3=0.41964337760708056626-0.60629072920719936909I$