找回密码
 欢迎注册
楼主: mathe

[转载] 一个初等数论题

[复制链接]
发表于 2009-1-31 14:59:18 | 显示全部楼层
用关键词“Sierpinski Number”搜索,以下链接比较有用: http://en.wikipedia.org/wiki/Sierpinski_number http://primes.utm.edu/glossary/page.php?sort=SierpinskiNumber
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-1-31 15:04:53 | 显示全部楼层

Riesel number

与之对应的是Riesel number:给定正整数k,使对于任意正整数n,$k2^n-1$均为合数。 最小的Riesel number是k=509203 ■ 509203×2n−1 has covering set {3, 5, 7, 13, 17, 241} ■ 762701×2n−1 has covering set {3, 5, 7, 13, 17, 241} ■ 777149×2n−1 has covering set {3, 5, 7, 13, 19, 37, 73} ■ 790841×2n−1 has covering set {3, 5, 7, 13, 19, 37, 73} ■ 992077×2n−1 has covering set {3, 5, 7, 13, 17, 241} 参考链接: http://en.wikipedia.org/wiki/Riesel_number http://primes.utm.edu/glossary/page.php?sort=RieselNumber
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-1-31 15:24:20 | 显示全部楼层
现在提出一个问题 :找一个既是Sierpinski Number又是Riesel number的k. 并使k尽量小.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-1-31 16:38:07 | 显示全部楼层
楼上的答案是 24353589864983498582396842396498098325645684395839568489684238。。。。。。。9823825258590335829683449064906589085 共1207位
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-1-31 17:06:11 | 显示全部楼层
关于Sierpinski Number和Riesel number数,下面一种方法可以比较容易手工构造,而不需要借助计算机。 我们考虑$3|2^{2^0}+1,5|2^{2^1}+1,17|2^{2^2}+1,257|2^{2^3}+1,...$ 也就是我们可以找出前k个费马“素数”的所有素因子。当然前面几个都是素数,所以只有一个素因子,但是我们知道后面会有一个非素数,也就是可以找到两个不同的素因子。 这些素数以2为底的周期分别为2,4,8,16,32等。而其中周期为64的我们应该可以找到两个不同的素数。 然后就好办了,取k使得$k*2^{2t+1}-=-1(mod 3)$,$k*2^{4t+2}-=-1(mod 5)$, $k*2^{8t+2}-=-1(mod 17)$,$k*2^{16t+2}-=-1(mod 257)$,... 而对于两个周期为64的素数$p_1,p_2$,分别要求$k*2^{64t}=-1(mod p_1),k*2^{64t+2}-=-1(mod p_2)$就可以了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-1-31 17:29:58 | 显示全部楼层
现在用gp计算一下,费马数前5个都是素数,也就是3,5,17,257,65537,但是第6个已经是合数了,即 $2^{2^5}+1=641*6700417$ 所以我们现在的目的是选择k,使得 $2k-=-1(mod 3),4k-=-1(mod 5),4k-=-1(mod 17),4k-=-1(mod 257),4k-=-1(mod 65537),k-=-1(mod 641),4k-=-1(mod 6700417)$ 这个条件相当于$k-=16473047977419515086(mod 18446744073709551615)$ 而这个可以给出一个Sierpinski Number 16473047977419515086。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-1-31 17:36:58 | 显示全部楼层
GxQ Chrome不支持数学表达式啊 看你们写的东西 都是乱七八糟的 呵呵 郁闷哦 最近只用Chrome了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 19:36 , Processed in 0.021655 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表