找回密码
 欢迎注册
查看: 30743|回复: 8

[讨论] 还能比315更小的吗?

[复制链接]
发表于 2018-5-3 19:24:47 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
三角形ABC,AF、BD、CE分别是角A、B、C的平分线,
线段K1、K2、K3、K4、K5、K6的长度是六个不同的自然数。
30+40+56+84+70+35=315。
六个不同自然数的和还能比315更小的吗?
360截图20180503191115281.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-5-3 20:36:21 来自手机 | 显示全部楼层
24,40,56

点评

谢谢mathe!厉害!我把问题想复杂了。  发表于 2018-5-4 06:59
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
回复

使用道具 举报

 楼主| 发表于 2018-5-4 06:54:13 | 显示全部楼层
本帖最后由 王守恩 于 2018-5-4 11:15 编辑


题目:(求好心人补个图,我不会画图),A是顶点,BC是底边,依次是B,P,Q,C。

\(\D P, Q 在 ΔABC 的 BC 边上,已知 BP=12 ,PQ=15 ,QC=9 ,∠BAP=∠CAQ ,AC=20 ,求 AB\)

答案我是硬凑(坏习惯不容易改)出来的,可是道理说不上来,要不还是瞎猫碰到死耗子?

\(设 AB=K\ \ \ ∠BAP=∠CAQ= ∠1\ \ \ \ ∠PAQ=∠2\)  
            
\(\D\frac{K×(15+9)\sin∠1}{20×12\sin(∠1+∠2)}=\frac{20×(12+15)\sin∠1}{K×9\sin(∠1+∠2)}\)
                  
\(\D化简\ \ \ \    \frac{K×24}{20×12} =\frac{ 20×27 }{K×9} \ \ \ \ \     解得 \ \ \   K^2=600\)






毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-6-2 19:57:57 | 显示全部楼层
76?
1*2 2*3 3*4 4*5 5*6 6*1
2,6,12,20,30,6
重复了两个6,不过按照这个思路,的确还能更小一些
64
6,12;8,20;15,3.
6/12*8/20*15/3=1
6+12+8+20+15+3=64

点评

谢谢 .·.·. !  发表于 2018-6-7 12:12
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-6-7 12:10:55 | 显示全部楼层
本帖最后由 王守恩 于 2018-6-7 17:34 编辑


可能是个幼稚的问题,我怎么也想不出来。
\(当\ x\ 是什么数时,\cosh(x)\ 是正整数。\)
\(如:x=\ln(2+\sqrt{3}),\cosh\left(\ln(2+\sqrt{3})\right)=2\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-6-9 13:03:36 | 显示全部楼层
王守恩 发表于 2018-6-7 12:10
可能是个幼稚的问题,我怎么也想不出来。
\(当\ x\ 是什么数时,\cosh(x)\ 是正整数。\)
\(如:x=\ln ...




     \(\D a(0)=\frac{\sinh\left(0\ln(\sqrt{1.25}+0.5)\right)}{\sqrt{1.25}}=0\)

     \(\D a(1)=\frac{\cosh\left(1\ln(\sqrt{1.25}+0.5)\right)}{\sqrt{1.25}}=1\)

     \(\D a(2)=\frac{\sinh\left(2\ln(\sqrt{1.25}+0.5)\right)}{\sqrt{1.25}}=1\)

     \(\D a(3)=\frac{\cosh\left(3\ln(\sqrt{1.25}+0.5)\right)}{\sqrt{1.25}}=2\)

     \(\D a(4)=\frac{\sinh\left(4\ln(\sqrt{1.25}+0.5)\right)}{\sqrt{1.25}}=3\)

     \(\D a(5)=\frac{\cosh\left(5\ln(\sqrt{1.25}+0.5)\right)}{\sqrt{1.25}}=5\)

     \(\D a(6)=\frac{\sinh\left(6\ln(\sqrt{1.25}+0.5)\right)}{\sqrt{1.25}}=8\)

     \(\D a(7)=\frac{\cosh\left(7\ln(\sqrt{1.25}+0.5)\right)}{\sqrt{1.25}}=13\)


毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-6-9 15:54:47 | 显示全部楼层
王守恩 发表于 2018-6-9 13:03
\(\D a(0)=\frac{\sinh\left(0\ln(\sqrt{1.25}+0.5)\right)}{\sqrt{1.25}}=0\)

     \(\D  ...

     \(\D a(0)=\sqrt{0.5}\sinh\left(0\ln(\sqrt{2}+1)\right)=0\)
     \(\D a(1)=\sqrt{0.5}\cosh\left(1\ln(\sqrt{2}+1)\right)=1\)
     \(\D a(2)=\sqrt{0.5}\sinh\left(2\ln(\sqrt{2}+1)\right)=2\)
     \(\D a(3)=\sqrt{0.5}\cosh\left(3\ln(\sqrt{2}+1)\right)=5\)
     \(\D a(4)=\sqrt{0.5}\sinh\left(4\ln(\sqrt{2}+1)\right)=12\)
     \(\D a(5)=\sqrt{0.5}\cosh\left(5\ln(\sqrt{2}+1)\right)=29\)
     \(\D a(6)=\sqrt{0.5}\sinh\left(6\ln(\sqrt{2}+1)\right)=70\)
     \(\D a(7)=\sqrt{0.5}\cosh\left(7\ln(\sqrt{2}+1)\right)=169\)
     \(\D a(8)=\sqrt{0.5}\sinh\left(8\ln(\sqrt{2}+1)\right)=408\)
     \(\D a(9)=\sqrt{0.5}\cosh\left(9\ln(\sqrt{2}+1\right))=985\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 23:30 , Processed in 0.025868 second(s), 21 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表