找回密码
 欢迎注册
楼主: shshsh_0510

[提问] 一个囚徒问题

[复制链接]
 楼主| 发表于 2009-6-19 08:23:43 | 显示全部楼层
本帖最后由 shshsh_0510 于 2009-6-19 08:25 编辑 第二种是先花费100天,然后可以得到一个初始值,从而省掉前面一些人的判断。至于省多少,关键是看首个出现两次的人出现的天数的期望 设p(n)=P{第n-1天还没出现,第n天出现} 则 $p(n)=((100!)/(100^n*(100-(n-1))!))*(n-1)/100$ 首个出现两次的人出现的天数的期望 E $E=\sum_(i=1)^100{p(i)*i=12.2}$ 于是平均省掉$\sum_(i=1)^11{100+100/i}=1212.851762天=3.3年$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-19 08:31:26 | 显示全部楼层
第3种方法分析比较复杂,所以留给大家 我认为二级计数者每个应该在10个左右最好。 另外,这个是目前似乎是最好成绩了,10年左右,是不是还可以更好些呢?还能好多少?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-23 12:01:23 | 显示全部楼层
12# shshsh_0510 这个题又想了一下,可以设想初始每人有一点的信息,然后通过放下、拾取,信息点开始在人间流动,直到最后有人收集了所有的点才结束。 显然固定一个收集人,则她成为这一过程的瓶颈,所以最好每个人都收集,然后汇总。 但是,收集过程中,往往最后的几人代价很高,所以每人手中的信息点数的不同状态数要尽量小! 想到一种方案,并编程试了一下,3000天可以50%左右的概率成功,所以期望在6000天。不知道他那个10年的是什么样的参数? 我的方法如下: 先两两配对,在X1次后,基本上变成50人有2点,50人0点了,然后再两两配对,X2次后,变成25人,每人4点,.... 另外,指定一个收集者,给一定时间Y对剩下的人补漏,最后剩下的6个有16点的人统一由此收集者进行收集 我的参数大概为: 1点 -2 点的合并:700天 2-4:500,然后 100天收集补漏 4-8:400 ,100 8-16:350,100 最后汇总:750 感觉最少不会少于Nlog2N=664,不知道可以有多接近
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-23 16:34:24 | 显示全部楼层
要能够把时间大量缩短才行,呵呵,看过《Prison Break》电视剧,觉得如果这个时间太久了,那么肯定有那些年纪大的或得了大病的囚徒,会孤注一掷地提前要求释放的。在那个20分钟内,一定有一个像迈克·斯科菲尔德的天才站出来的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 13:11 , Processed in 0.022138 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表