- 注册时间
- 2014-1-19
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 4905
- 在线时间
- 小时
|
楼主 |
发表于 2019-2-8 11:56:10
|
显示全部楼层
本帖最后由 葡萄糖 于 2019-2-8 19:04 编辑
mathe 发表于 2019-2-7 13:45
如果我们假设复数$(r\e^{i\theta_1})^3=a+bi$,并且$\theta_2=\theta_1+{2\pi}/3,\theta_3=\theta_1+{4\pi}/3$ ...
找一个例子,结果挺漂亮的
\begin{gather*}
\Large{\left(x^3-1\right)^2+1}\\
\\
\bigg(x^2-2\sqrt[6]{\,2\,}\cos\left(\frac{\pi}{12}\right)x+\sqrt[3]{\,2\,}\bigg)
\bigg(x^2-2\sqrt[6]{\,2\,}\cos\left(\frac{\pi}{12}+\frac{2\pi}{3}\right)x+\sqrt[3]{\,2\,}\bigg)
\bigg(x^2-2\sqrt[6]{\,2\,}\cos\left(\frac{\pi}{12}+\frac{4\pi}{3}\right)x+\sqrt[3]{\,2\,}\bigg) \\
\bigg(x^2-2\sqrt[6]{\,2\,}\cos\left(\frac{\pi}{12}\right)x+\sqrt[3]{\,2\,}\bigg)
\bigg(x^2+2\sqrt[6]{\,2\,}\cos\left(\,\frac{\pi}{4}\,\right)x+\sqrt[3]{\,2\,}\bigg)
\bigg(x^2+2\sqrt[6]{\,2\,}\cos\left(\frac{5\pi}{12}\right)x+\sqrt[3]{\,2\,}\bigg)
\end{gather*}
\[ \Large{\color{black}{\frac{x^3}{\left(x^3-1\right)^2+1}}} \]
\begin{gather*}
\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{5\pi}{12}\right)x}{x^2-2\sqrt[6]{\,2\,}\cos\left(\frac{\pi}{12}\right)x+\sqrt[3]{\,2\,}}
+\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{\pi}{4}\right)x}{x^2+2\sqrt[6]{\,2\,}\cos\left(\frac{\pi}{4}\right)x+\sqrt[3]{\,2\,}}
-\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{\pi}{12}\right)x}{x^2+2\sqrt[6]{\,2\,}\cos\left(\frac{5\pi}{12}\right)x+\sqrt[3]{\,2\,}}\\
\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{5\pi}{12}\right)x}{\left(x-\sqrt[6]{\,2\,}\cos\frac{\pi}{12}\right)^2+\left(\sqrt[6]{\,2\,}\sin\frac{\pi}{12}\right)^2}
+\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{\pi}{4}\right)x}{\left(x+\sqrt[6]{\,2\,}\cos\frac{\pi}{4}\right)^2+\left(\sqrt[6]{\,2\,}\sin\frac{\pi}{4}\right)^2}
-\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{\pi}{12}\right)x}{\left(x+\sqrt[6]{\,2\,}\cos\frac{5\pi}{12}\right)^2+\left(\sqrt[6]{\,2\,}\sin\frac{5\pi}{12}\right)^2}\\
\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\sin\left(\frac{\pi}{12}\right)x}{\left(x-\sqrt[6]{\,2\,}\cos\frac{\pi}{12}\right)^2+\left(\sqrt[6]{\,2\,}\sin\frac{\pi}{12}\right)^2}
+\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\sin\left(\frac{\pi}{4}\right)x}{\left(x+\sqrt[6]{\,2\,}\cos\frac{\pi}{4}\right)^2+\left(\sqrt[6]{\,2\,}\sin\frac{\pi}{4}\right)^2}
-\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{\pi}{12}\right)x}{\left(x+\sqrt[6]{\,2\,}\sin\frac{\pi}{12}\right)^2+\left(\sqrt[6]{\,2\,}\cos\frac{\pi}{12}\right)^2}
\end{gather*}
\begin{align*}
&&&{\Large\int}\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\sin\left(\frac{\pi}{12}\right)x}{\left(x-\sqrt[6]{\,2\,}\cos\frac{\pi}{12}\right)^2+\left(\sqrt[6]{\,2\,}\sin\frac{\pi}{12}\right)^2}\large\mathrm{d}x\\
&&\large{=}\quad&\frac{\sqrt[6]{\,2\,}}{3}\sin\left(\frac{\pi}{12}\right){\Large\int}\dfrac{x-\sqrt[6]{\,2\,}\cos\frac{\pi}{12}+\sqrt[6]{\,2\,}\cos\frac{\pi}{12}}{\left(x-\sqrt[6]{\,2\,}\cos\frac{\pi}{12}\right)^2+\left(\sqrt[6]{\,2\,}\sin\frac{\pi}{12}\right)^2}\large\mathrm{d}x\\
&&\large{=}\quad&\frac{\sqrt[6]{\,2\,}}{6}\sin\left(\frac{\pi}{12}\right)\ln\left(x^2-2\sqrt[6]{\,2\,}x\cos\frac{\pi}{12}+\sqrt[3]{\,2\,}\right)\\
&&&\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{\pi}{12}\right)\arctan\left(\frac{x-\sqrt[6]{\,2\,}\cos\frac{\pi}{12}}{\sqrt[6]{\,2\,}\sin\frac{\pi}{12}}\right)\\
\end{align*}
\begin{align*}
&&&{\Large\int}\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\sin\left(\frac{\pi}{4}\right)x}{\left(x+\sqrt[6]{\,2\,}\cos\frac{\pi}{4}\right)^2+\left(\sqrt[6]{\,2\,}\sin\frac{\pi}{4}\right)^2}\large\mathrm{d}x\\
&&\large{=}\quad&\frac{\sqrt[6]{\,2\,}}{3}\sin\left(\frac{\pi}{4}\right){\Large\int}\dfrac{x+\sqrt[6]{\,2\,}\cos\frac{\pi}{4}-\sqrt[6]{\,2\,}\cos\frac{\pi}{4}}{\left(x+\sqrt[6]{\,2\,}\cos\frac{\pi}{4}\right)^2+\left(\sqrt[6]{\,2\,}\sin\frac{\pi}{4}\right)^2}\large\mathrm{d}x\\
&&\large{=}\quad&+\frac{\sqrt[6]{\,2\,}}{6}\sin\left(\frac{\pi}{4}\right)\ln\left(x^2+2\sqrt[6]{\,2\,}x\cos\frac{\pi}{4}+\sqrt[3]{\,2\,}\right)\\
&&&-\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{\pi}{4}\right)\arctan\left(\frac{x+\sqrt[6]{\,2\,}\cos\frac{\pi}{4}}{\sqrt[6]{\,2\,}\sin\frac{\pi}{4}}\right)\\
\end{align*}
\begin{align*}
&&&-{\Large\int}\dfrac{\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{\pi}{12}\right)x}{\left(x+\sqrt[6]{\,2\,}\sin\frac{\pi}{12}\right)^2+\left(\sqrt[6]{\,2\,}\cos\frac{\pi}{12}\right)^2}\large\mathrm{d}x\\
&&\large{=}\,\,&-\frac{\sqrt[6]{\,2\,}}{3}\cos\left(\frac{\pi}{12}\right){\Large\int}\dfrac{x+\sqrt[6]{\,2\,}\sin\frac{\pi}{12}-\sqrt[6]{\,2\,}\sin\frac{\pi}{12}}{\left(x+\sqrt[6]{\,2\,}\sin\frac{\pi}{12}\right)^2+\left(\sqrt[6]{\,2\,}\cos\frac{\pi}{12}\right)^2}\large\mathrm{d}x\\
&&\large{=}\,\,&-\frac{\sqrt[6]{\,2\,}}{6}\cos\left(\frac{\pi}{12}\right)\ln\left(x^2+2\sqrt[6]{\,2\,}x\sin\frac{\pi}{12}+\sqrt[3]{\,2\,}\right)\\
&&&+\frac{\sqrt[6]{\,2\,}}{3}\sin\left(\frac{\pi}{12}\right)\arctan\left(\frac{x+\sqrt[6]{\,2\,}\sin\frac{\pi}{12}}{\sqrt[6]{\,2\,}\cos\frac{\pi}{12}}\right)\\
\end{align*} |
|