- 注册时间
- 2010-10-22
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 2292
- 在线时间
- 小时
|
楼主 |
发表于 2013-4-2 22:24:23
|
显示全部楼层
Mandelbulb (3d mandelbrot)
Introduction :
http://www.skytopia.com/project/fractal/mandelbulb.html
Math formula :
http://www.skytopia.com/project/fractal/2mandelbulb.html
To see the beast :
http://www.fractalforums.com/3d- ... uality-mandelbulbs/- What's the formula of this thing?
-
- There are a few subtle variations, which mostly end up producing the same kind of incredible detail. Listed below is one version. Similar to the original 2D Mandelbrot, the 3D formula is defined by:
-
- z -> z^n + c
-
- ...but where 'z' and 'c' are hypercomplex ('triplex') numbers, representing Cartesian x, y, and z coordinates. The exponentiation term can be defined by:
-
- {x,y,z}^n = r^n { sin(theta*n) * cos(phi*n) , sin(theta*n) * sin(phi*n) , cos(theta*n) }
- ...where:
- r = sqrt(x^2 + y^2 + z^2)
- theta = atan2( sqrt(x^2+y^2), z )
- phi = atan2(y,x)
-
- And the addition term in z -> z^n + c is similar to standard complex addition, and is simply defined by:
-
- {x,y,z}+{a,b,c} = {x+a, y+b, z+c}
-
- The rest of the algorithm is similar to the 2D Mandelbrot!
-
- Here is some pseudo code of the above:
-
- r = sqrt(x*x + y*y + z*z )
- theta = atan2(sqrt(x*x + y*y) , z)
- phi = atan2(y,x)
-
- newx = r^n * sin(theta*n) * cos(phi*n)
- newy = r^n * sin(theta*n) * sin(phi*n)
- newz = r^n * cos(theta*n)
-
- ...where n is the order of the 3D Mandelbulb. Use n=8 to find the exact object in this article.
复制代码 http://sourceforge.net/projects/mandelbulber/ |
|