- 注册时间
- 2008-1-13
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 20127
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
Problem 1
Determine the least possible value of the natural number n such that n! =1.2.3…n ends
in exactly 1987 zeros.
Problem 2
In the set of 20 elements {1,2,3,4,5,6,7,8,9,A,B,C,D,J,K,L,U,X,Y,Z} we have made an aleatory
suite of 28 throws..What is the probability that the sequence “Cuba July 1987” turn on in this order
in the suite already?
Problem 3*
For any integer r>=1, determine the smallest integer h( r )>=1 such that for any partition of the
set {1,2,…h( r )} in r classes, there are integers a>=0, 1<=x<=y, so that a+x, a+y and a+x+y belong
to the same class.
Problem 4
It is given that x = -2272, y = 10^3 +10^2 c+10b+a and z = 1 satisfy the equation ax+by+cz = 1, where a,
b, c are positive integers with a |
|