找回密码
 欢迎注册
查看: 21491|回复: 7

[原创] 四边形的定值轨迹问题

[复制链接]
发表于 2012-3-29 20:31:05 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
本帖最后由 数学星空 于 2012-3-30 00:24 编辑 已知在一个平面上的四点$A,B,C,D $有两条线段$AB=2,CD=1$ $AB$线段固定,$CD$为动线段且$C,D$两点位于$AB$的同一侧 $CD$的中点为$P$,求同时满足下面两个条件的$P$点的轨迹? (1)$AB+BC+CD+DA=L$(周长定值) (2)$S(ABCD)=S$(面积为定值)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-3-30 21:38:57 | 显示全部楼层
设$A(-1,0), B(1,0),C(r1*cos(t1),r1*sin(t2)),D(r2*cos(t2),r2*sin(t2)),P(x,y),$则 $sqrt((r1*cos(t1)-1)^2+(r1*sin(t1))^2)+sqrt((r2*cos(t2)+1)^2+(r2*sin(t2))^2)=L-3$ $r1*sin(t1)+r2*sin(t2)+r1*r2*sin(t2-t1)=2*S$ $r1^2+r2^2-2*r1*r2*cos(t2-t1)=1$ $x=1/2*(r1*cos(t1)+r2*cos(t2))$ $y=1/2*(r1*sin(t1)+r2*sin(t2))$ 可以消元$r1,r2,t1,t2$得到关于$x,y$的函数关系.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-3-30 21:41:13 | 显示全部楼层
有谁有兴趣取$S=1.4,L=5$,利用数值计算绘出$P(x,y)$的轨迹?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-3-31 20:05:08 | 显示全部楼层
我们对3#方程去根号展开有: $r1^2+r2^2-2*r1*r2*cos(t2)*cos(t1)-2*r1*r2*sin(t2)*sin(t1)-1=0$ $r2*sin(t2)+r1*sin(t1)+r1*r2*sin(t2)*cos(t1)-r1*r2*cos(t2)*sin(t1)-2*s=0$ $-4*r1*cos(t1)*L^2+4*r2*cos(t2)*L^2-4*r1^2*cos(t1)^2-r1^4-4*r1*cos(t1)*r2^2+2*r1^2*r2^2-r2^4+4*r1^3*cos(t1)-$ $8*r1*r2*cos(t2)*cos(t1)+4*L^2+4*r1^2*r2*cos(t2)+2*r1^2*L^2+2*r2^2*L^2-4*r2^3*cos(t2)-4*r2^2*cos(t2)^2-L^4=0$ 将$s=1.4,L=5-3=2$代入,并利用数值计算 并得到如下图形 线段$CD$ 的运动轨迹及中点$P$的轨迹 四边形1.jpg $C,D,P$点的运动轨迹 四边形CDP.jpg 中点$P$的运动轨迹 四边形P.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-3-31 20:14:17 | 显示全部楼层
奇怪的是:将5#的计算结果代入3#的三个方程中 得到的第二个方程 sqrt((r1*cos(t1)-1)^2+(r1*sin(t1))^2)+sqrt((r2*cos(t2)+1)^2+(r2*sin(t2))^2)-L(共取了53个样本点) {1.549508772}, {1.422145287}, {1.305716755}, {1.199647877}, {1.103555632}, {1.017243431}, {.940695637}, {.874065438}, {.817644658}, {.771799798}, {.736859593}, {.712954817}, {.699846292}, {.696815312}, {.702688135}, {.715999496}, {.735218604}, {.758940594}, {.785992716}, {.815460500}, {.846664919}, {.879119988}, {.912488716}, {.946545304}, {.981145591}, {1.016205130}, {1.051683401}, {1.087572728}, {1.123890636}, {1.160674728}, {1.197979430}, {1.235874122}, {1.274442389}, {1.313782178}, {1.354006795}, {1.395246758}, {1.437652564}, {1.481398584}, {1.526688364}, {1.573761834}, {1.622905150}, {1.674464328}, {1.728864527}, {1.786637972}, {1.848465754}, {1.915242709}, {1.988183014}, {2.069002397}, {2.160257257}, {2.266043677}, {2.393665568}, {2.558662429}, {2.808970412} 所有的结果并不为0,计算误差很大. 而代入5#的第三个方程 -4*r1*cos(t1)*L^2+4*r2*cos(t2)*L^2-4*r1^2*cos(t1)^2-r1^4-4*r1*cos(t1)*r2^2+2*r1^2*r2^2-r2^4+4*r1^3*cos(t1)-8*r1*r2*cos(t2)*cos(t1)+ 4*L^2+4*r1^2*r2*cos(t2)+2*r1^2*L^2+2*r2^2*L^2-4*r2^3*cos(t2)-4*r2^2*cos(t2)^2-L^4 =0 注:代入其它方程均近似于0,只有这个含有根号的方程例外.... 我利用5#方程算出的数值解为(共53组解) {L = 2, m = 1/100, n = .2937046429, r1 = 1.774296268, r2 = 1.880375024, s = 1.4, t1 = 0.1999933337e-1, t2 = .5713425552}, {L = 2, m = 1/50, n = .3142603636, r1 = 1.709147912, r2 = 1.829803199, s = 1.4, t1 = 0.3999466795e-1, t2 = .6089756226}, {L = 2, m = 3/100, n = .3346241373, r1 = 1.648302020, r2 = 1.785080345, s = 1.4, t1 = 0.5998200972e-1, t2 = .6458236557}, {L = 2, m = 1/25, n = .3547234060, r1 = 1.591287398, r2 = 1.745829143, s = 1.4, t1 = 0.7995737424e-1, t2 = .6817530809}, {L = 2, m = 1/20, n = .3744670602, r1 = 1.537698908, r2 = 1.711756053, s = 1.4, t1 = 0.9991679144e-1, t2 = .7166067071}, {L = 2, m = 3/50, n = .3937409840, r1 = 1.487193274, r2 = 1.682644582, s = 1.4, t1 = .1198563102, t2 = .7501981117}, {L = 2, m = 7/100, n = .4124032970, r1 = 1.439489088, r2 = 1.658348216, s = 1.4, t1 = .1397720033, t2 = .7823058708}, {L = 2, m = 2/25, n = .4302803500, r1 = 1.394371264, r2 = 1.638780154, s = 1.4, t1 = .1596599714, t2 = .8126692726}, {L = 2, m = 9/100, n = .4471656900, r1 = 1.351699479, r2 = 1.623895750, s = 1.4, t1 = .1795163484, t2 = .8409888269}, {L = 2, m = 1/10, n = .4628257426, r1 = 1.311418324, r2 = 1.613662693, s = 1.4, t1 = .1993373050, t2 = .8669369553}, {L = 2, m = 11/100, n = .4770169864, r1 = 1.273563476, r2 = 1.608015674, s = 1.4, t1 = .2191190535, t2 = .8901854592}, {L = 2, m = 3/25, n = .4895177195, r1 = 1.238254416, r2 = 1.606799237, s = 1.4, t1 = .2388578520, t2 = .9104533487}, {L = 2, m = 13/100, n = .5001706708, r1 = 1.205664311, r2 = 1.609715396, s = 1.4, t1 = .2585500081, t2 = .9275682727}, {L = 2, m = 7/50, n = .5089221372, r1 = 1.175966995, r2 = 1.616303011, s = 1.4, t1 = .2781918830, t2 = .9415196317}, {L = 2, m = 3/20, n = .5158381354, r1 = 1.149277452, r2 = 1.625968995, s = 1.4, t1 = .2977798952, t2 = .9524753729}, {L = 2, m = 4/25, n = .5210876056, r1 = 1.125611565, r2 = 1.638063490, s = 1.4, t1 = .3173105244, t2 = .9607500467}, {L = 2, m = 17/100, n = .5249016822, r1 = 1.104880633, r2 = 1.651965046, s = 1.4, t1 = .3367803143, t2 = .9667398485}, {L = 2, m = 9/50, n = .5275290714, r1 = 1.086915239, r2 = 1.667141961, s = 1.4, t1 = .3561858765, t2 = .9708551022}, {L = 2, m = 19/100, n = .5292030779, r1 = 1.071500824, r2 = 1.683177517, s = 1.4, t1 = .3755238931, t2 = .9734724323}, {L = 2, m = 1/5, n = .5301245517, r1 = 1.058409709, r2 = 1.699766682, s = 1.4, t1 = .3947911197, t2 = .9749116248}, {L = 2, m = 21/100, n = .5304572937, r1 = 1.047423045, r2 = 1.716698256, s = 1.4, t1 = .4139843884, t2 = .9754310437}, {L = 2, m = 11/50, n = .5303305230, r1 = 1.038342817, r2 = 1.733833437, s = 1.4, t1 = .4331006099, t2 = .9752331675}, {L = 2, m = 23/100, n = .5298442086, r1 = 1.030996693, r2 = 1.751086505, s = 1.4, t1 = .4521367760, t2 = .9744738909}, {L = 2, m = 6/25, n = .5290748674, r1 = 1.025238613, r2 = 1.768409560, s = 1.4, t1 = .4710899614, t2 = .9732721026}, {L = 2, m = 1/4, n = .5280807514, r1 = 1.020947244, r2 = 1.785781288, s = 1.4, t1 = .4899573263, t2 = .9717180608}, {L = 2, m = 13/50, n = .5269060948, r1 = 1.018023587, r2 = 1.803199044, s = 1.4, t1 = .5087361171, t2 = .9698801456}, {L = 2, m = 27/100, n = .5255844316, r1 = 1.016388458, r2 = 1.820673430, s = 1.4, t1 = .5274236690, t2 = .9678100888}, {L = 2, m = 7/25, n = .5241411235, r1 = 1.015980184, r2 = 1.838224688, s = 1.4, t1 = .5460174061, t2 = .9655469303}, {L = 2, m = 29/100, n = .5225952587, r1 = 1.016752669, r2 = 1.855880366, s = 1.4, t1 = .5645148440, t2 = .9631199780}, {L = 2, m = 3/10, n = .5209610681, r1 = 1.018673862, r2 = 1.873673894, s = 1.4, t1 = .5829135890, t2 = .9605510059}, {L = 2, m = 31/100, n = .5192489757, r1 = 1.021724648, r2 = 1.891643814, s = 1.4, t1 = .6012113401, t2 = .9578558773}, {L = 2, m = 8/25, n = .5174663751, r1 = 1.025898119, r2 = 1.909833496, s = 1.4, t1 = .6194058890, t2 = .9550457448}, {L = 2, m = 33/100, n = .5156181974, r1 = 1.031199249, r2 = 1.928291251, s = 1.4, t1 = .6374951209, t2 = .9521279125}, {L = 2, m = 17/50, n = .5137073208, r1 = 1.037644944, r2 = 1.947070770, s = 1.4, t1 = .6554770135, t2 = .9491064727}, {L = 2, m = 7/20, n = .5117348557, r1 = 1.045264500, r2 = 1.966231887, s = 1.4, t1 = .6733496388, t2 = .9459827231}, {L = 2, m = 9/25, n = .5097003288, r1 = 1.054100519, r2 = 1.985841688, s = 1.4, t1 = .6911111612, t2 = .9427554475}, {L = 2, m = 37/100, n = .5076017825, r1 = 1.064210349, r2 = 2.005976011, s = 1.4, t1 = .7087598382, t2 = .9394210495}, {L = 2, m = 19/50, n = .5054357939, r1 = 1.075668176, r2 = 2.026721451, s = 1.4, t1 = .7262940199, t2 = .9359735637}, {L = 2, m = 39/100, n = .5031974162, r1 = 1.088567963, r2 = 2.048178006, s = 1.4, t1 = .7437121476, t2 = .9324045376}, {L = 2, m = 2/5, n = .5008800325, r1 = 1.103027520, r2 = 2.070462614, s = 1.4, t1 = .7610127542, t2 = .9287027743}, {L = 2, m = 41/100, n = .4984751045, r1 = 1.119194134, r2 = 2.093713940, s = 1.4, t1 = .7781944621, t2 = .9248538969}, {L = 2, m = 21/50, n = .4959717830, r1 = 1.137252456, r2 = 2.118098960, s = 1.4, t1 = .7952559831, t2 = .9208396910}, {L = 2, m = 43/100, n = .4933563252, r1 = 1.157435716, r2 = 2.143822238, s = 1.4, t1 = .8121961166, t2 = .9166371149}, {L = 2, m = 11/25, n = .4906112250, r1 = 1.180042031, r2 = 2.171139346, s = 1.4, t1 = .8290137491, t2 = .9122168358}, {L = 2, m = 9/20, n = .4877138949, r1 = 1.205458850, r2 = 2.200376918, s = 1.4, t1 = .8457078522, t2 = .9075410083}, {L = 2, m = 23/50, n = .4846346118, r1 = 1.234200944, r2 = 2.231963770, s = 1.4, t1 = .8622774814, t2 = .9025598228}, {L = 2, m = 47/100, n = .4813331777, r1 = 1.266972207, r2 = 2.266481547, s = 1.4, t1 = .8787217746, t2 = .8972058869}, {L = 2, m = 12/25, n = .4777531869, r1 = 1.304772214, r2 = 2.304752124, s = 1.4, t1 = .8950399503, t2 = .8913845830}, {L = 2, m = 49/100, n = .4738114264, r1 = 1.349094291, r2 = 2.348000308, s = 1.4, t1 = .9112313064, t2 = .8849562406}, {L = 2, m = 1/2, n = .4693762054, r1 = 1.402333152, r2 = 2.398189323, s = 1.4, t1 = .9272952180, t2 = .8776996692}, {L = 2, m = 51/100, n = .4642161116, r1 = 1.468755976, r2 = 2.458821709, s = 1.4, t1 = .9432311357, t2 = .8692259080}, {L = 2, m = 13/25, n = .4578471358, r1 = 1.557423390, r2 = 2.537354230, s = 1.4, t1 = .9590385840, t2 = .8587208238}, {L = 2, m = 53/100, n = .4488069039, r1 = 1.696193334, r2 = 2.656808538, s = 1.4, t1 = .9747171589, t2 = .8437226072} 注:sin(t1)=2*m/(1+m^2),sin(t2)=2*n/(1+n^2)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-4-1 09:57:54 | 显示全部楼层

建议这样设参数

设A(-1,0), B(1,0),C(r1*cos(t1),r1*sin(t2)),D(r2*cos(t2),r2*sin(t2)),P(x,y),则 ... 数学星空 发表于 2012-3-30 21:38
我将图形放大了一倍,AB=4,CD=2 设A(-2,0), B(2,0), P(x,y), CD的倾角为t, 则C(x+cost, y+sint), D(x-cost, y-sint)

评分

参与人数 1威望 +2 金币 +2 贡献 +2 收起 理由
数学星空 + 2 + 2 + 2 多谢提醒!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-4-2 00:32:10 | 显示全部楼层
根据楼上的巧妙设参数简化了很多运算 我们设$A(-2,0), B(2,0), P(x,y), CD$的倾角为$t$, 则$C(x+cost, y+sint), D(x-cost, y-sint)$ $2*y-x*sin(t)+cos(t)*y=s$ $sqrt((x+cos(t)-2)^2+(y+sin(t))^2)+sqrt((x-cos(t)+2)^2+(y-sin(t))^2)=L$很容易消元得到 $4992*y^4*L^2+6912*x^4*y^2+6912*x^2*y^4-1152*x^4*L^2+320*y^4*L^4+384*y^6*L^2+16*y^6*L^4-8*y^4*L^6+$ $16*x^6*L^4-8*x^4*L^6-12544*x^2*L^2*y^2-896*y^2*L^2*x^4+640*y^2*L^4*x^2+128*y^4*L^2*x^2-640*x^6*L^2+$ $320*x^4*L^4+48*y^2*L^4*x^4-16*y^2*L^6*x^2+48*y^4*L^4*x^2+2304*y^6+2304*x^6+2704*y^2*L^4-104*y^2*L^6+$ $y^2*L^8+144*x^2*L^4-40*x^2*L^6+x^2*L^8-8192*y^3*L^2*s-6144*x^4*y*s-512*y^5*L^2*s+3712*y^2*L^2*s^2-1408*x^2*s^2*L^2+$ $128*x^4*s^2*L^2+128*y^4*L^2*s^2-1664*y*L^4*s+1536*s^2*x^4+256*s^2*L^4-6144*y^5*s+5632*y^4*s^2-2048*y^3*s^3+$ $256*s^4*y^2+256*x^2*s^4+8192*x^2*L^2*y*s-1024*x^2*y^3*s*L^2+256*x^2*y^2*s^2*L^2-512*y*x^4*L^2*s+32*L^6*y*s-$ $2048*x^2*y*s^3-12288*x^2*y^3*s+7168*x^2*y^2*s^2-512*s^3*L^2*y-32*s^2*L^4*y^2-32*s^2*L^4*x^2=0$ 取$s=3*sqrt(3),L=4$代入得到 $1769472-86016*x^2*y^3*sqrt(3)-559104*y^3*sqrt(3)-1548288*y*sqrt(3)-43008*y^5*sqrt(3)-43008*x^4*y*sqrt(3)+$ $227328*x^2*y*sqrt(3)+336384*y^4-704256*x^2+1900800*y^2+201728*x^2*y^2+127488*x^4+4864*x^4*y^2+$ $21248*x^2*y^4+12544*y^6-3840*x^6=0$ 画图: 四边形中点轨迹.jpg 取局部坐标放大$-5 方程轨迹(局部).jpg 通过数值计算得到(检验一下上面的符号计算结果的正确性) 四边形$ABCD$的运行轨迹 四边形运行轨迹.jpg 四边形$ABCD$及$P$的运行轨迹 四边形运行轨迹加中点.jpg $P$的运行轨迹 方程轨迹.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-4-2 14:10:47 | 显示全部楼层
线太多有点昏
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 13:35 , Processed in 0.035159 second(s), 21 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表