找回密码
 欢迎注册
查看: 67|回复: 3

[讨论] 1/n=1/a+1/b+1/c+1/d

[复制链接]
发表于 昨天 08:38 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
如何把 1/7 拆分成四个不同单位分数的和,并且四个分母之和为最小?

\(a(1)=24,\frac{1}{1}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}\)     
\(a(2)=43,\frac{1}{2}=\frac{1}{5}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)   
\(a(3)=52,\frac{1}{3}=\frac{1}{9}+\frac{1}{10}+\frac{1}{15}+\frac{1}{18}\)      
\(a(4)=74,\frac{1}{4}=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}\)      
\(a(5)=84,\frac{1}{5}=\frac{1}{15}+\frac{1}{20}+\frac{1}{21}+\frac{1}{28}\)
\(a(6)=99,\frac{1}{6}=\frac{1}{20}+\frac{1}{21}+\frac{1}{28}+\frac{1}{30}\)
\(a(7)=120,\frac{1}{7}=\frac{1}{21}+\frac{1}{24}+\frac{1}{35}+\frac{1}{40}\)   
\(a(8)=135,\frac{1}{8}=\frac{1}{24}+\frac{1}{30}+\frac{1}{36}+\frac{1}{45}\)   
\(a(9)=153,\frac{1}{9}=\frac{1}{26}+\frac{1}{36}+\frac{1}{39}+\frac{1}{52}\)

—答案是个错家伙?——OEIS没有这串数?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 昨天 15:49 | 显示全部楼层
{1,{2,4,6,12},24}
{2,{4,10,12,15},41}
{3,{9,10,15,18},52}
{4,{10,15,21,28},74}
{5,{15,20,21,28},84}
{6,{20,21,28,30},99}
{7,{20,28,30,42},120}
{8,{24,30,36,45},135}
{9,{26,36,39,52},153}
{10,{30,40,42,56},168}
{11,{36,44,45,55},180}
{12,{40,42,56,60},198}
{13,{39,52,60,65},216}
{14,{45,55,63,66},229}
{15,{50,55,66,75},246}
{16,{55,60,66,80},261}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 昨天 17:14 | 显示全部楼层
northwolves 发表于 2026-1-16 15:49
{1,{2,4,6,12},24}
{2,{4,10,12,15},41}
{3,{9,10,15,18},52}

这代码有问题吗?——心里没底气。谢谢!
  1. LaunchKernels[]; ParallelTable[Module[{M = 24 n, S = {}, a, b, c, d, k, u, v}, For[a = 2 n, a < 4 n, a++, For[b = a + 1, b ≤ 4 n, b++, For[c = b + 1, c ≤ 9 n, c++, u = a*b*c*n;
  2. v = a*b*c - n (a*b + (a + b) c); If[v > 0 && Mod[u, v] == 0, d = u/v; If[c < d && d ≤ 12 n, k = a + b + c + d; If[k ≤ M, M = k; S = {a, b, c, d}]]]]]]; {n, M, S}], {n, 100}]
复制代码

{{1,  24,  {2,   4,   6, 12}},  {2,   43,  {5,   6,   12,  20}}, {3,  52,  {9,   10,  15, 18}},    {4,  74,   {10,  15,   21,  28}},   {5,     84,    {15,  20,   21,  28}},
{6,  99,  {20, 21, 28, 30}},  {7,  120, {21,  24,  35,  40}}, {8, 135, {24,  30,  36, 45}},    {9,  153,  {26,  36,   39,  52}},   {10,  168,   {30,  40,   42,  56}},
{11, 180, {36, 44, 45, 55}}, {12, 198, {40,   42,  56,  60}}, {13, 216, {39,  52,  60, 65}},   {14,  229,  {45,  55,   63,  66}},   {15,  246,   {50,  55,   66,  75}},
{16, 261, {55, 60,  66,  80}}, {17, 308, {44,   68,  77, 119}}, {18, 297, {60,  63,  84, 90}},   {19,  330,  {55,  66,   95, 114}},   {20, 323,   {70,  78,   84,  91}},
{21, 344, {70,  78,  91, 105}}, {22, 360, {72,   88,  90, 110}}, {23, 405, {60,  92,  115, 138}}, {24,  387,  {88,  90,   99, 110}},   {25, 417,  {75,  100, 110, 132}},
{26, 420, {91, 104, 105, 120}}, {27, 440, {90, 108, 110, 132}}, {28, 458, {90,  110,  126, 132}}, {29, 546,  {78,  91,  174, 203}}, {30, 485,  {108, 110, 132, 135}},
{31, 626, {72, 120, 155, 279}}, {32, 522, {110, 120, 132, 160}}, {33, 536, {112, 126, 144, 154}}, {34, 583, {117, 119, 126, 221}}, {35, 576,  {112, 140, 144, 180}},
{36, 583, {126, 136, 153, 168}}, {37, 713, {84,  148, 222, 259}}, {38, 612, {136, 152, 153, 171}}, {39, 641, {136, 144, 153, 208}}, {40, 646,  {140, 156, 168, 182}},
{41, 776, {120, 123, 205, 328}}, {42, 681, {147, 156, 182, 196}}, {43, 906, {129, 132, 172, 473}}, {44, 706, {165, 171, 180, 190}}, {45, 723,  {168, 175, 180, 200}},
{46, 775, {156, 161, 182, 276}}, {47, 1008, {112, 144, 329, 423}},{48,  774, {176, 180, 198, 220}}, {49, 824, {147, 180, 245, 252}}, {50, 817,  {175, 180, 210, 252}},
{51, 839, {176, 187, 204, 272}}, {52,  840,  {182, 208, 210, 240}}, {53, 1189, {120, 168, 371, 530}}, {54, 880, {180, 216, 220, 264}}, {55, 888,  {198, 207, 230, 253}},
{56, 912, {189, 216, 234, 273}}, {57,  925,  {190, 228, 247, 260}}, {58, 1051, {145, 230, 299, 377}}, {59, 1386, {126, 198, 413, 649}}, {60, 969,  {210, 234, 252, 273}},
{61, 1464, {122, 244, 366, 732}}, {62, 1003, {217, 234, 273, 279}}, {63, 1012, {231, 252, 253, 276}}, {64, 1044, {220, 240, 264, 320}}, {65, 1052, {234, 240, 272, 306}},
{66, 1067, {234, 252, 273, 308}}, {67, 1374, {168, 201, 469, 536}}, {68, 1107, {240, 255, 272, 340}}, {69, 1151, {208, 276, 299, 368}}, {70, 1125, {260, 273, 280, 312}},
{71, 1704, {142, 284, 426, 852}}, {72, 1155, {270, 280, 297, 308}}, {73, 1752, {146, 292, 438, 876}}, {74, 1205, {259, 280, 296, 370}}, {75, 1217, {252, 300, 315, 350}},
{76, 1224, {272, 304, 306, 342}}, {77, 1247, {264, 308, 315, 360}}, {78, 1260, {273, 312, 315, 360}}, {79, 1602, {180, 316, 395, 711}}, {80, 1291, {285, 304, 342, 360}},
{81, 1300, {300, 324, 325, 351}}, {82, 1363, {275, 287, 350, 451}}, {83, 1992, {166, 332, 498, 996}}, {84, 1351, {312, 315, 360, 364}}, {85, 1368, {306, 340, 342, 380}},
{86, 1518, {253, 276, 473, 516}}, {87, 1430, {286, 319, 390, 435}}, {88, 1412, {330, 342, 360, 380}}, {89, 1990, {210, 267, 623, 890}}, {90, 1446, {336, 350, 360, 400}},
{91, 1487, {308, 330, 420, 429}}, {92, 1481, {342, 345, 380, 414}}, {93, 1549, {310, 340, 372, 527}}, {94, 1599, {282, 330, 470, 517}}, {95, 1538, {342, 360, 380, 456}},
{96, 1548, {352, 360, 396, 440}}, {97, 2328, {194, 388, 582,1164}}, {98, 1583, {342, 380, 420, 441}}, {99,1593, {352, 396, 416, 429}}, {100, 1615, {350, 390, 420, 455}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 6 小时前 | 显示全部楼层
把基础资料补上——A213062——Minimal sum x(1) +...+ x(n) such that 1/x(1) +...+ 1/x(n) = 1, the x(i) being n distinct positive integers.

1, 0, 11, 24, 38, 50, 71, 87, 106, 127, 151, 185, 211, 249, 288, 325, 364, 406, 459, 508, 550, 613, 676, 728,——Table of n, a(n) for n=1..24.

a(3) = 11 = 2 + 3 + 6, because 1/2+1/3+1/6 is the only Egyptian fraction with 3 terms having 1 as sum.
a(4) = 24 = 2 + 4 + 6 + 12 is the smallest sum of denominators among the six 4-term Egyptian fractions equal to 1.
a(5) = 38 = 3 + 4 + 5 + 6 + 20, least sum of denominators among 72 possible 5-term Egyptian fractions equal to 1.
a(6) = 50 = 3 + 4 + 6 + 10 + 12 + 15, least sum of denominators among 2320 possible 6-term Egyptian fractions equal to 1.
a(7) <= 71 = 3 + 5 + 20 + 6 + 10 + 12 + 15 (obtained from n=6 using 1/4 = 1/5 + 1/20).
a(8) <= 114 = 3 + 5 + 20 + 7 + 42 + 10 + 12 + 15 (obtained using 1/6 = 1/7 + 1/42).
a(9) <= 145 = 3 + 6 + 30 + 20 + 7 + 42 + 10 + 12 + 15 (obtained using 1/5 = 1/6 + 1/30).
a(10) <= 202 = 3 + 6 + 30 + 20 + 8 + 56 + 42 + 10 + 12 + 15 (obtained using 1/7 = 1/8 + 1/56).

03, 011=2+3+6,
04, 024=2+4+6+12,
05, 038=3+4+5+06+20,
06, 050=3+4+6+10+12+15,
07, 071=3+4+9+10+12+15+18,
08, 087=4+5+6+09+10+15+18+20,
09, 106=4+6+8+09+10+12+15+18+24,
10, 127=5+6+8+09+10+12+15+18+20+24,
11, 151=6+7+8+09+10+12+14+15+18+24+28,
12, 185=6+7+9+10+11+12+14+15+18+22+28+33,
13, 211=7+8+9+10+11+12+14+15+18+22+24+28+33,
14, 249=7+8+9+10+11+14+15+18+20+22+24+28+30+33,
15, 288=7+8+10+11+12+14+15+18+20+22+24+28+30+33+36,
16, 325=8+9+10+11+12+15+16+18+20+21+22+24+28+30+33+48,
17, 364=8+9+11+12+14+15+16+18+20+21+22+24+28+30+33+35+48,
18, 406=9+10+11+12+14+15+16+18+20+21+22+24+28+30+33+35+40+48,
19, 459=9+10+11+12+14+15+18+20+21+22+24+26+28+30+33+35+39+40+52,
20, 508=8+11+12+14+15+16+18+20+21+22+24+26+28+30+33+35+36+39+48+52,
21, 550=10+11+12+14+15+16+18+20+21+22+24+26+28+30+33+35+36+39+40+48+52,
22, 613=10+11+12+14+15+16+20+21+22+24+26+27+28+30+33+35+36+39+40+48+52+54,
23, 676=09+11+14+15+16+18+20+21+22+24+26+27+28+30+33+35+36+39+42+48+52+54+56,
24, 728=10+12+14+15+16+18+20+21+22+24+26+27+28+30+33+35+39+40+44+45+48+52+54+55,

后面的没有了?后面的就没有了吗?!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2026-1-17 15:07 , Processed in 0.027523 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表