找回密码
 欢迎注册
查看: 17|回复: 0

[求助] Mordell's equation y^2 = x^3 ± k^2

[复制链接]
发表于 昨天 22:36 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
本帖最后由 northwolves 于 2026-1-17 22:40 编辑

$ y^2 = x^3 ± k^2$ 与  $y^2 = x^3 ± k$ 相比,计算$n$个解的最小$k$值有什么优化策略 ?


A392548
  a(n) is the least positive integer k such that Mordell's equation $y^2 = x^3 - k^2$ has exactly n integer solutions with y >= 0.

DATA
3, 1, 2, 10, 80, 530, 26, 1160, 208, 1664, 730, 1090, 5840, 8720, 46720, 69760, 214370

OFFSET
0,1

COMMENTS
Conjecture: a(n) is even for all n>1.

a(30) = 293410.

LINKS
Xiaoyang Zhang, <a href="https://www.zhihu.com/question/1993841306041071339">The Mordell's equation y² = x³ - k² (k is an integer and 0 < k < 1000).When k takes what value, does it have the most sets of positive integer solutions?(in Chinese)</a>

EXAMPLE
a(6) = 26 because 26 is the least k such that y^2 = x^3 - k^2 has 6 integral solutions with nonnegative y: {{10,18},{13,39},{26,130},{130,1482},{338,6214},{901,27045}}.


A392549  a(n) is the least positive integer k such that Mordell's equation $y^2 = x^3 + k^2$ has exactly n integer solutions with y >= 0.

DATA
2, 11, 1, 6, 3, 10, 80, 62, 63, 210, 55, 840, 15, 440, 120, 960, 3240, 561, 2415, 510, 665, 19320, 1155, 5320

OFFSET
1,1

COMMENTS
a(25) > 80000 if it exists. a(26) = 31185, a(27) = 9240, a(29) = 73920, a(33) = 54285.

EXAMPLE
a(6) = 10 because 10 is the least k such that y^2 = x^3 + k^2 has 6 integral solutions with nonnegative y: {{-4, 6},{0, 10},{5, 15},{20, 90},{24, 118},{2660, 137190}}.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2026-1-18 16:39 , Processed in 0.024694 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表