- 注册时间
- 2008-1-13
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 25565
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
本帖最后由 northwolves 于 2026-1-17 22:40 编辑
$ y^2 = x^3 ± k^2$ 与 $y^2 = x^3 ± k$ 相比,计算$n$个解的最小$k$值有什么优化策略 ?
A392548 a(n) is the least positive integer k such that Mordell's equation $y^2 = x^3 - k^2$ has exactly n integer solutions with y >= 0.
DATA
3, 1, 2, 10, 80, 530, 26, 1160, 208, 1664, 730, 1090, 5840, 8720, 46720, 69760, 214370
OFFSET
0,1
COMMENTS
Conjecture: a(n) is even for all n>1.
a(30) = 293410.
LINKS
Xiaoyang Zhang, <a href="https://www.zhihu.com/question/1993841306041071339">The Mordell's equation y² = x³ - k² (k is an integer and 0 < k < 1000).When k takes what value, does it have the most sets of positive integer solutions?(in Chinese)</a>
EXAMPLE
a(6) = 26 because 26 is the least k such that y^2 = x^3 - k^2 has 6 integral solutions with nonnegative y: {{10,18},{13,39},{26,130},{130,1482},{338,6214},{901,27045}}.
A392549 a(n) is the least positive integer k such that Mordell's equation $y^2 = x^3 + k^2$ has exactly n integer solutions with y >= 0.
DATA
2, 11, 1, 6, 3, 10, 80, 62, 63, 210, 55, 840, 15, 440, 120, 960, 3240, 561, 2415, 510, 665, 19320, 1155, 5320
OFFSET
1,1
COMMENTS
a(25) > 80000 if it exists. a(26) = 31185, a(27) = 9240, a(29) = 73920, a(33) = 54285.
EXAMPLE
a(6) = 10 because 10 is the least k such that y^2 = x^3 + k^2 has 6 integral solutions with nonnegative y: {{-4, 6},{0, 10},{5, 15},{20, 90},{24, 118},{2660, 137190}}. |
|