- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
楼主 |
发表于 2014-5-5 21:33:44
|
显示全部楼层
对于边长为L,内接于椭圆\(\frac{(x-x_0)^2}{m^2}+\frac{(y-y_0)^2}{n^2}=1\),外切于椭圆 \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
我们很容易列出:
\(\frac{n(\sin(\beta)-\sin(\alpha))}{m(cos(\beta)-\cos(\alpha))}+\frac{b\cos(t)}{a\sin(t)}=0\)
\(\frac{(y_0+n\sin(\beta)-b\sin(t))}{x_0+m\cos(\beta)-a\cos(t)}+\frac{b\cos(t)}{a\sin(t)}=0\)
\(L^2-n^2(\sin(\beta)-\sin(\alpha))^2-m^2(\cos(\beta)-\cos(\alpha))^2=0\)
作代换:
\(\sin(\alpha) = \frac{2u}{u^2+1}, \cos(\alpha) =\frac{-u^2+1}{u^2+1}, \sin(\beta) =\frac{2v}{v^2+1}, \cos(\beta) =\frac{-v^2+1}{v^2+1}, \sin(t) = \frac{2k}{k^2+1}, \cos(t) =\frac{-k^2+1}{k^2+1}\)
通过消元\({\alpha,\beta}\)我们可以得到:
\((b^4k^8m^4+8a^2b^2k^6m^2n^2-4b^4k^6m^4+16a^4k^4n^4-16a^2b^2k^4m^2n^2+6b^4k^4m^4+8a^2b^2k^2m^2n^2-4b^4k^2m^4+b^4m^4)L^2+64k^4a^4m^2n^2y_0^2-16k^6b^4m^2n^2x_0^2+24k^4b^4m^2n^2x_0^2+4k^8b^4m^2n^2x_0^2-16k^2b^4m^2n^2x_0^2-8ab^4m^2n^2x_0-16a^2k^2b^2m^2n^4-16k^6a^2b^2m^2n^4+32k^4a^2b^2m^2n^4+16k^2a^4b^2m^2n^2-16a^2k^2b^2m^4n^2-16k^6a^2b^2m^4n^2+32k^4a^2b^2m^4n^2+4a^2b^4k^8m^2n^2-8a^2b^4k^4m^2n^2+16a^4k^6n^2b^2m^2+32a^4k^4n^2b^2m^2-4b^4m^4n^2-16k^7a^2b^3m^2n^2y_0-64k^5a^4bm^2n^2y_0+16k^5a^2b^3m^2n^2y_0+16k^3a^2b^3m^2n^2y_0-32a^3b^2k^2m^2n^2x_0+16a^2k^2b^2m^2n^2x_0^2+16k^6a^2b^2m^2n^2x_0^2-32k^4a^2b^2m^2n^2x_0^2+8k^8ab^4m^2n^2x_0+32k^6a^3b^2m^2n^2x_0-16k^6ab^4m^2n^2x_0+16k^2ab^4m^2n^2x_0+16a^2k^2b^2m^2n^2y_0^2+16k^6a^2b^2m^2n^2y_0^2-32k^4a^2b^2m^2n^2y_0^2-16ka^2b^3m^2n^2y_0-64k^3a^4bm^2n^2y_0+4b^4m^2n^2x_0^2-64k^4a^4m^2n^4+4a^2b^4m^2n^2+16k^6b^4m^4n^2-24k^4b^4m^4n^2-4k^8b^4m^4n^2+16k^2b^4m^4n^2+64k^3a^3bm^2n^2x_0y_0-16k^7ab^3m^2n^2x_0y_0+48k^5ab^3m^2n^2x_0y_0-48k^3ab^3m^2n^2x_0y_0+16kab^3m^2n^2x_0y_0-64k^5a^3bm^2n^2x_0y_0=0\)
|
|