| 
注册时间2009-2-12最后登录1970-1-1威望 星金币 枚贡献 分经验 点鲜花 朵魅力 点上传 次下载 次积分27490在线时间 小时 
 | 
 
 发表于 2014-5-8 23:27:47
|
显示全部楼层 
| \(s_0=(0,0,1,0,0,0)^T,\quad A= \begin{pmatrix}
 1 & \frac12 & 0 & 0 & 0 & 0 \\
 0 & 0 & \frac12 & 0 & 0 & 0 \\
 0 & \frac12 & 0 & \frac12 & 0 & 0 \\
 0 & 0 & \frac12 & 0 & \frac12 & 0 \\
 0 & 0 & 0 & \frac12 & 0 & 0 \\
 0 & 0 & 0 & 0 & \frac12 & 1 \\
 \end{pmatrix},\quad s_n= A^{n-1}\cdot s_0\)
 
 经过 \(n\) 次角逐,
 甲赢的概率是 \( X_n =\frac{1}{5} 4^{-n-1} \left(\left(\sqrt{5}-1\right) \left(-1-\sqrt{5}\right)^n+3\ 4^{n+1}-\left(1+\sqrt{5}\right) \left(\sqrt{5}-1\right)^n+\left(3 \sqrt{5}-5\right) \left(1-\sqrt{5}\right)^n-\left(5+3 \sqrt{5}\right) \left(1+\sqrt{5}\right)^n\right)\), \[ \lim_{n\to \infty }X_n =\frac{3}{5}\]
 乙赢的概率是 \(Y_n =\frac{1}{5} 4^{-n-1} \left(-\left(\sqrt{5}-1\right) \left(-1-\sqrt{5}\right)^n+2^{2 n+3}+\left(1+\sqrt{5}\right) \left(\sqrt{5}-1\right)^n+\left(3 \sqrt{5}-5\right) \left(1-\sqrt{5}\right)^n-\left(5+3 \sqrt{5}\right) \left(1+\sqrt{5}\right)^n\right)\),  \[ \lim_{n\to \infty }Y_n =\frac{2}{5}\]
 \[X_n+Y_n =1-\frac{F_{n+2}}{2^n}, F_n \text{表示第} n \text{个 Fibonacci 数}\]
 | 
 |