- 注册时间
- 2011-3-28
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 13453
- 在线时间
- 小时
|
发表于 2017-5-25 22:01:10
|
显示全部楼层
本帖最后由 zeroieme 于 2017-5-25 22:04 编辑
5个
尽管以1:1交换,但人们更加喜欢排序靠前,说明它们之间有细微价值差异。
\(\delta _a>\delta _b>\delta _c>\delta _d>\delta _e\)
另外3条规则以不等式表示成
\(4 \delta _d>\delta _c+3 \delta _e\)
\(8 \delta _b+56 \delta _d>\delta _a+28 \delta _c+35 \delta _e\)
\(6 \delta _c+10 \delta _e>\delta _b+15 \delta _d\)
设\(\delta _a+10 \delta _c>n_1 \delta _a+\left(11-n_1-n_3-n_4-n_5\right) \delta _b+n_3 \delta _c+n_4 \delta _d+n_5 \delta _e\)成立,可表示为前述条件的和,即\(\left(\delta _a+10 \delta _c\right)-\left(n_1 \delta _a+\left(11-n_1-n_3-n_4-n_5\right) \delta _b+n_3 \delta _c+n_4 \delta _d+n_5 \delta _e\right)=x_6 \left(\left(8 \delta _b+56 \delta _d\right)-\left(\delta _a+28 \delta _c+35 \delta _e\right)\right)+x_1 \left(\delta _a-\delta _b\right)+x_7 \left(\left(6 \delta _c+10 \delta _e\right)-\left(\delta _b+15 \delta _d\right)\right)+x_2 \left(\delta _b-\delta _c\right)+x_5 \left(4 \delta _d-\left(\delta _c+3 \delta _e\right)\right)+x_3 \left(\delta _c-\delta _d\right)+x_4 \left(\delta _d-\delta _e\right)\)
于是构成了一个整数规划
[code]Maximize[{(11-Subscript[n, 1]-Subscript[n, 3]-Subscript[n, 4]-Subscript[n, 5]),Apply[And,Flatten[{(0<=#<=11&/@{(11-Subscript[n, 1]-Subscript[n, 3]-Subscript[n, 4]-Subscript[n, 5]),Subscript[n, 1],Subscript[n, 3],Subscript[n, 4],Subscript[n, 5]}),(#>=0&/@{Subscript[x, 1],Subscript[x, 2],Subscript[x, 3],Subscript[x, 4],Subscript[x, 5],Subscript[x, 6],Subscript[x, 7]}),(#==0&/@(MonomialList[((Subscript[\[Delta], a]+10Subscript[\[Delta], c])-((11-Subscript[n, 1]-Subscript[n, 3]-Subscript[n, 4]-Subscript[n, 5])Subscript[\[Delta], b]+Subscript[n, 1] Subscript[\[Delta], a]+Subscript[n, 3] Subscript[\[Delta], c]+Subscript[n, 4] Subscript[\[Delta], d]+Subscript[n, 5] Subscript[\[Delta], e]))-(Subscript[x, 1](Subscript[\[Delta], a]-Subscript[\[Delta], b])+Subscript[x, 2](Subscript[\[Delta], b]-Subscript[\[Delta], c])+Subscript[x, 3](Subscript[\[Delta], c]-Subscript[\[Delta], d])+Subscript[x, 4](Subscript[\[Delta], d]-Subscript[\[Delta], e])+Subscript[x, 5](4 Subscript[\[Delta], d]-(Subscript[\[Delta], c]+3 Subscript[\[Delta], e]))+Subscript[x, 6]((8 Subscript[\[Delta], b]+56 Subscript[\[Delta], d])-(Subscript[\[Delta], a]+28 Subscript[\[Delta], c]+35 Subscript[\[Delta], e]))+Subscript[x, 7]((6 Subscript[\[Delta], c]+10 Subscript[\[Delta], e])-(Subscript[\[Delta], b]+15 Subscript[\[Delta], d]))),{Subscript[\[Delta], a],Subscript[\[Delta], b],Subscript[\[Delta], c],Subscript[\[Delta], d],Subscript[\[Delta], e]}]/.Subscript[\[Delta], _]->1))}]]},{Subscript[n, 1],Subscript[n, 3],Subscript[n, 4],Subscript[n, 5],Subscript[x, 1],Subscript[x, 2],Subscript[x, 3],Subscript[x, 4],Subscript[x, 5],Subscript[x, 6],Subscript[x, 7]},Integers][\code]
结果5 |
|