- 注册时间
- 2008-11-5
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 4315
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。例如:
0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,…
(一)完全平方数的性质
性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。
推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
性质6:平方数的形式必为下列两种之一:3k,3k+1。
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9。
性质9:完全平方数的数字之和只能是0,1,4,7,9。
性质10: a^2b为完全平方数的充要条件是b为完全平方数。
性质11:如果质数p能整除a,但p^2不能整除a,则a不是完全平方数。
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若
n^2 |
|