找回密码
 欢迎注册
查看: 23857|回复: 9

[讨论] 超级难题:广场上的4只狗

[复制链接]
发表于 2009-12-24 13:30:18 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
有4只狗,分别站在正方形广场的4个角上,按顺时针方向,每一只狗都以同样速度紧追着前面一只狗,请问它们会相遇吗?如果相遇需要花多少时间?如果不相遇请证明之 提示: 1.计算题目所需要的数值,例如正方形边长,狗的速度等,均可用变量表示,例如a,v之类的 2.所有的狗都是同一时刻开始移动,并没有先后次序,而且方向是"紧追"前面的狗
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-24 14:41:54 | 显示全部楼层
老题了啊。a/v
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-12-24 14:48:40 | 显示全部楼层
楼上的是怎么算的?...有朋友用极限证明出它们是不会相遇的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-24 19:04:07 | 显示全部楼层
关键在于对下面这句话的理解: 每一只狗都以同样速度紧追着前面一只狗 第一种理解:是以地面为参照物,狗的速度始终为v,速度方向在任意时刻都朝着被追的狗。 第二种理解:以被追的狗为参照物,狗的速度始终为v,速度方向在任意时刻都朝着被追的狗。在这种情况,以地面上的不动的人来说,狗的速度方向不是朝着狗的。 ------------------------------------------------------- 一般来说,对于狗来说,它始终追着另一条狗,总是对着被追的狗跑的(即以被追的狗为参照物,始终朝着它)。所以应该第二种理解是对的。 对于第二种理解:可以以狗A为参照物,追它的为狗B,则狗B的运动是以速度为v的直线运动,它们的初始距离是a,所以相遇的时间为a/v
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-12-24 19:44:16 | 显示全部楼层
我觉得情况还是比较复杂,他们的初始距离是a,但他们的运动轨迹可能比a更长,所以即使相遇,时间也不一定是a/v 我是想到它们的轨迹应该是往广场中心移动的螺旋曲线,这条曲线可能是像风车那样只有1/4圆,或者像波板糖那样超过半圈甚至可能旋转多圈,这样的话相遇时所走过的距离s就会远远大于边长a...还有一个很重要的问题,这个风车一样的螺旋曲线是否能到达圆心
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-25 12:32:00 | 显示全部楼层
下面严格证明(证明方法是我自已想出来的,据说比黑博士考研数学2002预测卷上的解法漂亮):所用时间=a/v 令正方形ABCD的中点O为极点,极轴经过A点,建立极坐标系。 设X(ρ,θ)为此曲线上的一点,φ为向量OX与X(ρ,θ)点切线(正向)夹角,ρ=f(θ)为曲线方程。 按条件,φ=45°(为常数,不随点的变化而变化) 又ρ/ρ'=tg(φ) 故dρ/dθ=ρ 解得ρ=Ce^(θ) (C为常数) 又|OA|=(√2/2)a,f(0)= |OA| 故C=(√2/2)a 得ρ=f(θ)= (√2/2)a e^(θ) (1)  方程(1)这就是A点狗轨迹的极坐标方程:θ∈(-∞,0)的标准等角螺线。 按此理论解不难绘出狗的行进轨迹(见下图)。 追逐问题.JPG 下面求狗轨迹(曲线)的长度L: L=∫(-∞,0) √(ρ2+ρ’2) dθ =∫(-∞,0) a e^(θ)dθ = a e^(0)-lim(θ-->-∞) a e^(θ) =a 设四只狗经过多少t(秒)(完全)重合,则 t=L/ v =a/v 太简单了,太完美了,真是难以令人置信。 以上是纯数学解,实际情况如何呢? 当狗接近极点O时,会越转越快。 只要狗有宽度(无论多小),其边缘上点的速度会越来越大,超过第一宇宙速度,超过光速,… 所以,实际上狗无论以多慢的匀速按题目条件走,决不可到极点O。 本问题太美妙了,真是令人非常惊叹!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-25 13:14:35 | 显示全部楼层
速度不变总长度有限,所花时间肯定是有限的。 变化越来越大的是角速度,也就是它旋转的速度越来越快,但是由于旋转半径越来越小,线速度还是不会太大的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-25 19:53:40 | 显示全部楼层
6楼何来简单之说。 最简单的是:直接以被追的狗为参照物,追它的狗的运动就是初距为a,速度为v的匀速直线运动。 马上得到答案。由于不涉及到对力的计算,参照系不必局限于牛顿的参照系。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-25 19:58:40 | 显示全部楼层
5楼的思想局限还是局限在参照系的选择上。 只要能做出答案,为什么非要选广场为参照物呢?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-25 20:38:05 | 显示全部楼层
如果 每一只狗都以同样速度紧追着前面一只狗 是第一种理解:是以地面为参照物,狗的速度始终为v,速度方向在任意时刻都朝着被追的狗。 -------------------------------------------- 那么以广场为参照物: 在任何时刻,把狗的速度v分解为指向广场中心的速度v1和与之垂直方向的速度v2。 根据对称性,狗的速度V与v1永远成45度角,所以v1固定等于v/√2,而最终狗相遇于广场中心。 v1决定狗与广场中心的距离的缩短,而v2与距离的缩短无关。 ---------------------------------------------------------------------- 而初始,狗与广场中心的距离为a/√2,狗与广场中心距离缩短的速度恒为v1=v/√2. 所以马上得出时间等于a/√2除以v/√2,等于a/v. 所以对于第一种理解,上述解法才是最简单的。 而对于第二种理解,8楼是最简单的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 08:56 , Processed in 0.031343 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表