找回密码
 欢迎注册
楼主: mathe

[转载] 抛硬币出现连续正面的概率

[复制链接]
 楼主| 发表于 2008-7-18 18:29:29 | 显示全部楼层
也就是为了对于给定的t,如果我们要计算对应通项公式,可以通过解方程$x^{t+1}-2x^t+1=0$的所有解,然后就可以有通项公式了。
谁来数值计算一下$F_102^{(10)}$和$F_1002^{(10)}$?
其中$F_0^{(10)}=0,F_1^{(10)}=1,F_2^{(10)}=1,F_3^{(10)}=2,F_4^{(10)}=4,F_5^{(10)}=8,F_6^{(10)}=16,F_7^{(10)}=32,F_8^{(10)}=64,F_9^{(10)}=128,F_10^{(10)}=256,F_11^{(10)}=512,F_12^{(10)}=1023$
而$F_{n+11}^{(10)}=2F_{n+10}^{(10)}-F_n^{(10)}$
而抛100次,存在连续正面10次以上的概率为${F_102^{(10)}}/{2^100}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-7-18 18:10:54 | 显示全部楼层
shshsh的应该没有错,现在我来推导一下。
我们需要计算硬币抛n次过程中出现t次连续正面的概率。
我们对抛硬币过程中出现的状态进行分类:
其中$s_0$表示还没有出现t次连续正面的情况,而且当前最后一次硬币出现状态为反面或初试状态。
其中$s_1$表示还没有出现t次连续正面的情况,而且当前最后一次硬币出现状态为正面但是最后才连续1次正面
其中$s_2$表示还没有出现t次连续正面的情况,而且当前最后一次硬币出现状态为正面而且最后正好连续2次正面
...
其中$s_{t-1}$表示还没有出现t次连续正面的情况,而且当前最后一次硬币出现状态为正面而且最后正好连续t-1次正面
其中$s_t$表示已经出现t次连续正面的情况。
所以开始抛硬币之前处在状态$s_0$,然后抛硬币过程中,如果当前状态为$s_k$,其中k<t,那么抛一次硬币有$1/2$的概率
转移到$s_0$,还有$1/2$的概率转移到$s_{k+1}$;而如果当前状态为$s_t$,那么状态永远不会再改变。
所以我们可以得到状态转移矩阵M为
$[(1/2,1/2,1/2,...,1/2,0),(1/2,0,0,...,0,0),(0,1/2,0,...,0,0),(0,0,1/2,...,0,0),(...,...,...,...,...,...),(0,0,0,...,1/2,1)]$
其中我们知道对于初试状态,状态只可能为$s_0$,对应概率分布为$b=[(1),(0),(0),(...),(0),(0)]$
其中b是一个长度为t+1的列向量,b的第h个分量表示状态在$s_{h-1}$的概率
而经过k步以后,状态分布的概率变化为$M^k b$
而我们需要的值为经过n步以后到达状态$s_t$的概率,也就是$M^n b$最后一个分量,或者我们记
$u=(0,0,0,...,0,1)$
那么所求的结果就是$a_n = u M^n b$
为此我们可以先对矩阵M进行分析,由于矩阵2M更加简单,我们改为分析矩阵
$2M=[(1,1,1,...,1,0),(1,0,0,...,0,0),(0,1,0,...,0,0),(0,0,1,...,0,0),(...,...,...,...,...,...),(0,0,0,...,1,2)]$
而矩阵2M的特征多项式很简单,为
$g(x)=(2-x)(1+x+...+x^{t-1}-x^t)$
$={(x^{t+1}-2x^t+1)(2-x)}/{x-1}$
所以矩阵M的特征多项式为$f(x)=g(2x)$
所以我们知道如果计算结果为$a_n$,
我们知道数列一个特征根为1,而由于n趋向无穷时$a_n->1$,
可以假设$a_n=1+u_1 ({x_1}/2)^n+u_2 ({x_2}/2)^n+...+u_t ({x_t}/2)^n$
其中$x_1,x_2,...,x_t$时方程$x^{t+1}-2x^t+1$除去1以后的n个根
我们可以假设$b_n=2^n (1-a_n)$
那么我们可以知道${x^{t+1}-2x^t+1}/{x-1}$是数列$b_n$的特征多项式
也就是说,数列$b_n$满足递推式$b_{n+t+1}=2b_{n+t}-b_n$或者$b_{n+t}=b_{n+t-1}+b_{n+t-2}+...+b_n$,这个应该就是所谓的广义Fibonacci数列
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-18 17:30:25 | 显示全部楼层
这个问题貌似可以这样,我们设M(x,y)为在长度为x的01序列中含有长度为y的1序列的总个数。可以看到如果能求M,问题就差不多了。M的样子如下:
mm1.GIF
我们可以看到,M的每一行(不为0的部分)满足:M(x)=2M(x-1)-M(x-3)+2^(x-3)。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-7-18 16:52:44 | 显示全部楼层
是这个吗,但没有推导过程:

http://mathworld.wolfram.com/CoinTossing.html

"Similarly, the probability that no k consecutive tails will occur in n tosses is given by $F_(n+2)^((k))/2^n$, where $F_l^((k))$ is a Fibonacci k-step number."

[ 本帖最后由 无心人 于 2008-7-18 17:07 编辑 ]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-5-3 16:59 , Processed in 0.051631 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表