数学研发网设为首页收藏本站

数学研发论坛

 找回密码
 欢迎注册
查看: 5676|回复: 45

[擂台] 因子和相等的连续数

[复制链接]
发表于 2008-4-29 21:23:29 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
精华
用记号σ(n)来表示自然数n的所有因子和。比如:σ(15)=1+3+5+15=24.
1): 观察发现σ(14)=σ(15)=24,求10^8以内所有这样的数对(n,n+1).
2): 能否找到满足σ(n)=σ(n+1)=σ(n+2)的三元数组(n,n+1,n+2)?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-4-29 21:49:56 | 显示全部楼层
让人不禁想起亲和数对(m,n): σ(n) = σ(m) = m + n
和伙(m,n,p): σ(n) = σ(m) = σ(p) = m + n + p
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-4-29 21:51:59 | 显示全部楼层
那你的问题只能构造
质数p, q, r, s满足
p + q + pq = r + s + rs
pq = rs + 1
这样的方程求了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-4-29 21:54:38 | 显示全部楼层
假设p = 3,  r = 2

3 + q + 3q = 2 + s + 2s
即1 + 4q = 3s
3q = 2s + 1
只有一组解

似乎说明
对每个素数对
(p, r)如果解出的(q, s)是素数对
则得到一组你说的数
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-4-29 22:05:24 | 显示全部楼层
考虑上面的假设两个都是双素因子数
n = rs, n+1 = pq

p + q + pq = r + s + rs
pq = rs + 1

假设p, r已知


(1+p)q - (1+r)s = r - p
pq  - rs = 1

解线性方程组
得到

s = p - (p+1)/(r-p)
q = (1+rs) / p
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-4-29 22:09:52 | 显示全部楼层
但是, n和n+1不一定是双素因子形式的啊。
比如:206=2*103和207=3*3*23。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-4-29 22:13:43 | 显示全部楼层


不同的不好分析啊
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-4-30 11:24:06 | 显示全部楼层
很少结果呀
10^9以内所有结果为:
14,24
206,312
2974,4464
4364,7644
18873,28314
19358,29040
174717,262080
1591406,2387112
14327037,21490560
129113918,193670880
其中第一列为n,第二列为σ(n) =σ(n+1)
计算过程大概花费了两分钟,要不要更加大范围的数据?
程序时间复杂度大概为O(nlog(n)),所以基本上能够估计出来多长时间可以计算到多大的范围
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-4-30 12:36:18 | 显示全部楼层
又找到两个结果:
10459762713,15689644074
10460117006,15690175512
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-4-30 13:50:40 | 显示全部楼层
mathe说一下算法.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|Archiver|数学研发网 ( 苏ICP备07505100号  

GMT+8, 2017-7-25 08:36 , Processed in 0.208553 second(s), 20 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表