g99
发表于 2009-1-9 13:20:06
小学生的是特例,一推广就比较高深
mathe
发表于 2009-1-9 13:22:05
还有3个内点的情况:)
无心人
发表于 2009-1-9 13:22:10
现在用程序可以得到任何情况下的数量了
但是写出公式就很难了
稍后,如果能写出haskell代码,我将给出n = 7..100内的结果
主要是偶数边的情况要考虑如何减
无心人
发表于 2009-1-9 13:22:57
三个内点的?
给出个图形吧
无心人
发表于 2009-1-9 13:28:02
情况D
三个点都在内部
考虑顶点1的对角线1a
$a in $
有$xy, zw$两个对角线与其相交组成三个内点
则有
$x, y, z, w in , x != y, z != w, 1 < x < z < a < y < w$
无心人
发表于 2009-1-9 13:34:33
偶数边情况下
$xy, 1 <= y > x <= n, y - x = n / 2$交于一个点
mathe
发表于 2009-1-9 13:34:45
其实只有情况D最难分析,其它情况我觉得都应该可以比较容易用公式计算出来.
而对于情况D,主要会出现三条对角线共线的情况,这也是为什么我提到那个计算正多边形对角线交点数目的论文.而使用那个论文中的结论,应该也可以解决这里的问题.
无心人
发表于 2009-1-9 13:36:32
情况C也有这个问题的, 不过是能很容易计算出需要减去的数量吧了
mathe
发表于 2009-1-9 13:39:44
情况C还好呀,不存在三点共线问题.
情况D主要的问题在于我们通常考虑在圆周上取顺序的6个点$x_1,x_2,x_3,x_4,x_5,x_6$
那么对角线$x_1x_4,x_2x_5,x_3x_6$两两相交通常围成一个所有顶点在内部的三角形,唯一的例外是三线共点.
mathe
发表于 2009-1-9 13:42:25
先给出我过去收藏的计算正n边形所有对角形交点数目公式和划分的区域数目的公式:
http://blog.csdn.net/mathe/archive/2007/05/02/1594819.aspx
里面提供了一个原论文的链接,不过现在好像不能访问了.
另外在wolframe网站上也能找到相关的内容,但是他的公式再次弄错了.