gxqcn
发表于 2019-6-21 08:48:57
mathe 发表于 2019-6-20 14:09
正方形分成7个区域先猜测一个对称的图
https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTE0MXw3MDc2NDY5OXwxNTYxMDc3Njc3fDh8Mjc0NQ%3D%3D&noupdate=yes
总长度3.28072646427294
mathe 的 116# 中的第一幅图,中间似乎已出现“等角六边形”(我很兴奋),但左右“两肋”却是两段圆弧而非直线段(又很遗憾),
如果内部交界点处切线夹角必须满足两两成120°的规律,那么,这“两肋”之间应该的连线应该是已退化为线段(因为两端的切线正好重合了)。
究竟是那里出了问题?
数学星空
发表于 2019-6-25 20:28:33
关于112#及115#的计算过程及结果:
即关于\(N=8\) 构型I的计算:
设\(AA1=2a,AB=2b,BE=2c,BF=2d\),三段圆弧\(\widehat{AB},\widehat{BE},\widehat{BF}\)的半径,半弧长,圆周角分别为\(R_0,R_1,R_2,t_0,t_1,t_2,\theta_0,\theta_1,\theta_2\)则有下列方程:
对曲边三边形BEF有面积方程:
\(\frac{1}{2}(\frac{c}{\sin(t_1)})^2(2t_1-\sin(2t_1))+\frac{1}{2}(\frac{d}{\sin(t_2)})^2(2t_2-\sin(2t_2))+2cd\sin(\frac{2\pi}{3}-t_1-t_2)+\frac{1}{2}(\frac{2\pi}{3}-2t_1-2t_2-\sin(\frac{2\pi}{3}-2t_1-t_2))=\frac{\pi}{8}\)
对曲边五边形ABFF2B2有面积方程:
\((\frac{b}{\sin(t_0)})^2(2t_0-\sin(2t_0))+2b^2\sin(\frac{2\pi}{3}-2t_0)+4(2b\cos(\frac{\pi}{6}+t_0)+d\cos(\frac{\pi}{2}+2t_0-t_2))d\sin(\frac{\pi}{2}+2t_0-t_2)+\frac{1}{2}(4t_2-4t_0-\sin(4t_2-4t_0))-\frac{d}{\sin(t_2)})^2(2t_2-\sin(2t_2))=\frac{\pi}{8}\)
对曲边五边形ABEE1B1有面积方程:
\(4(a+b\cos(\frac{\pi}{3}-t_0))b\sin(\frac{\pi}{3}-t_0)+2(2a+4b\cos(\frac{\pi}{3}-t_0))c\sin(\frac{\pi}{3}+t_1+2t_0)-2c^2\sin(\frac{2\pi}{3}+2t_1+4t_0)-(\frac{c}{\sin(t_1)})^2(2t_1-\sin(2t_1))+(\frac{b}{\sin(t_0)})^2(2t_0-\sin(2t_0))+\frac{1}{2}(-\frac{\pi}{3}+4t_1+4t_0-\sin(-\frac{\pi}{3}+4t_1+4t_0))=\frac{\pi}{8}\)
分别在三角形OEB,ABO计算OB有:
\(1+4c^2-4c\cos(t_1)=a^2+4b^2-4ab\cos(\frac{2\pi}{3}+t_0)\)
分别对三角形OBF,OAB计算OB:
\(1+4d^2-4d\cos(t_2)=a^2+4b^2-4ab\cos(\frac{2\pi}{3}+t_0)\)
在五边形ABEE1B1中计算EE1/2:
\(\sin(2t_0+2t_1-\frac{\pi}{6})=(a+2b\cos(\frac{\pi}{3}-t_0))-2c\cos(\frac{\pi}{3}+2t_0+t_1)\)
对B点三段圆弧的半径倒数和为0:
\(\frac{\sin(t_0)}{b}-\frac{\sin(t_1)}{c}+\frac{\sin(t_2)}{d}=0\)
求解以上方程得到:
\(a =0 .1404073125854350146716747, b = 0.1373435153588433544790543, c =0 .3784271511063521270499447, d = 0.3338495743821102038744899, t_0 = 0.03407923799948390366169432, t_1 =0 .3200553392647668414219998, t_2 =0 .1959876619928881608748679\)
\(R_0 = 4.030903037304680237279858, R_1 = 1.202810519083707801365736, R_2 = 1.714375517575520524011609\)
\(L=2a+8R_0t_0+8R_1t_1+8R_2t_2=7.147474482652381763627598\)
数学星空
发表于 2019-6-25 20:35:12
关于下列构型有着很强的规律性,但不知是否最优(似乎与正多面体构型类似,中间叠放部分只存在三边形,五边形,六边形的基本单元?)?
对于\(N=8\) 构型II 的计算:
设\(IG=2a,CG=2b,CA=2c,AO=BO=e,NC=2d\),三段圆弧\(\widehat{CG},\widehat{CA},\widehat{CN}\)的半径,半弧长,圆周角分别为\(R_0,R_1,R_2,t_0,t_1,t_2,\theta_0,\theta_1,\theta_2\)则有下列方程:
对曲边五边形ABDGC有面积方程:
\((\frac{c}{\sin(t_1)})^2(2t_1-\sin(2t_1))+(\frac{b}{\sin(t_0)})^2(2t_0-\sin(2t_0))+2b^2\sin(\frac{2\pi}{3}-2t_0)+4(e+c\cos(\frac{\pi}{3}+t_1)c\sin(\frac{\pi}{3}+t_1)=\frac{\pi}{8}\)
对曲边五边形CAEMN有面积方程:
\(-(\frac{c}{\sin(t_1)})^2(2t_1-\sin(2t_1))+2c^2\sin(\frac{2\pi}{3}+2t_1)+4(2c\sin(\frac{\pi}{3}+t_1)+d\cos(\frac{\pi}{2}-2t_1-t_2))d\sin(\frac{\pi}{2}-2t_1-t_2)+\frac{1}{2}(4t_1+4t_2-\sin(4t_1+4t_2))=\frac{\pi}{8}\)
对\(\angle GDB \)有:
\(\frac{\pi}{2}+t_0+t_1=\frac{2\pi}{3}-t_0-t_1\)
对单位圆半径IO=IG+GO有方程:
\(2a+2b\sin(\frac{\pi}{6}+t_0))+2c\sin(\frac{\pi}{2}-2t_0-t_1)=1\)
分别对三角形ANO,CNO计算NO:
\(1+e^2-2e\cos(2t_1+2t_2)=4c^2+4d^2-8cd\cos(\frac{2\pi}{3}+t_1+t_2)\)
分别对三角形ACG,AGO计算AG:
\(4b^2+4c^2-8bc\cos(\frac{2\pi}{3}-t_0-t_1)=e^2+(1-2a)^2\)
对C点三段圆弧的半径倒数和为0:
\(\frac{\sin(t_0)}{b}-\frac{\sin(t_1)}{c}+\frac{\sin(t_2)}{d}=0\)
分别对五边形OCNME,三角形NOM计算MN边上的高线:
\(e+2c\cos(\frac{\pi}{3}+t_1)+2d\sin(\frac{\pi}{2}-2t_1-t_2)=\cos(2t_1+2t_2)\)
可以计算出:
\(a =0 .1901769795817331618309615, b =0 .2884422119188707996520303, c =0 .1443490260954234766393950, d = 0.2381022966476015149264157, e = 0.3440802749179558466096139\)
\(t_0 =0 .1359304941570299131125923, t_1 =0 .1258688936421195234259614, t_2 = 0.09535393230790106642941993\)
\(R_0 = 2.128531900121159210220004, R_1 = 1.149854270368826336282691, R_2 = 2.500825011796743735790923\)
\(L=4a+2e+8R_0t_0+8R_1t_1+8R_2t_2=6.829082682260719120355591\)
画图得到:
mathe
发表于 2019-6-25 21:24:24
N=8还存在另外一种可能的构图
相当于选择N=7的最优构图,将6条散射线中一条的尾端产生两个分叉,就可以多处一个区域。然后调整各点的位置和分界线的弧度来达到平衡。甚至我们还可以试验N=7也有类似的方案。而N=8也可以试验从N=6最优图的五条散射线中两条的尾端各自产生分叉,多出两个区域。
我觉得这种方案比中间两个区域挤在一起应该靠谱些
zeroieme
发表于 2019-6-26 11:25:42
一般情况,完全计算所有边长的图形,接近圆形的面积较大;有一段不必纳入边长和的图形,接近半圆的面积较大。所以把边缘区域“拉得过长”的方案,不如靠边界的两边“粘合”起来。“缩入”成为内部区域。问题是那个“长宽比”该是多少?
zeroieme
发表于 2019-6-26 11:37:58
还是无法传图
N=9构型 3
内部三个相接五边形,中间相接是三段等长、之间为120°的线段。每个内部五边形除了中间相接部分,另外的三段为曲线,非中间相接的两顶点与边界圆各有一线段/弧线连接。
mathe
发表于 2019-6-29 13:30:13
划分成8个区域的近似逼近解,中心“七边形”的方案还是有差距的。
6.92792495028745:
7.07740541540335:
6.91427988771841:
mathe
发表于 2019-6-29 17:03:05
前面代码显然计算精度不够,得到的结果不好,
现在修订了代码,结果要好很多:
6.82326123654612
(具体数据)
7.04017022768063(计算这个图程序停不下来,应该是结果无法收敛,中间部分应该需要改成七边形,转为了星空的最优解)
6.76815953042611
(具体数据)
mathe
发表于 2019-6-29 22:00:17
终于在n=9时找到了超越星空104#的解的方案
7.31494334143164:
A(0.60709203264349,-0.04753106466644)
A=>J(-0.00000000000004)
A=>B(0.08407578100477)
A=>I(-0.08407578100476)
B(0.35660871384379,0.38042570964165)
B=>K(-0.10911694634698)
B=>A(-0.08407578100477)
B=>C(0.12260582929224)
C(0.05342515808133,0.31497233714764)
C=>B(-0.12260582929224)
C=>H(0.11023555500428)
C=>D(0.04488378327095)
D(-0.10577420000672,0.44034487322536)
D=>L(0.10370943688338)
D=>C(-0.04488378327095)
D=>E(0.01365160332953)
E(-0.46430508783646,0.27214696940693)
E=>M(0.02264572630075)
E=>D(-0.01365160332953)
E=>F(-0.00683521819668)
F(-0.50100236279553,-0.19657014020826)
F=>G(0.01365160332953)
F=>N(-0.02264572630075)
F=>E(0.00683521819668)
G(-0.17301712024887,-0.41851746064377)
G=>O(-0.10370943688338)
G=>F(-0.01365160332953)
G=>H(0.04488378327095)
H(0.00375439225886,-0.31944909645048)
H=>C(-0.11023555500428)
H=>I(0.12260582929225)
H=>G(-0.04488378327095)
I(0.29305704491544,-0.43128999961873)
I=>H(-0.12260582929225)
I=>A(0.08407578100476)
I=>P(0.10911694634698)
J(0.99694912083112,-0.07805415090862)
J=>A(0.00000000000004)
K(0.60663008726281,0.79498423709374)
K=>B(0.10911694634698)
L(-0.10860263216838,0.99408524196172)
L=>D(-0.10370943688338)
M(-0.85273053535571,0.52235106400961)
M=>E(-0.02264572630075)
N(-0.92363465693199,-0.38327408014909)
N=>F(0.02264572630075)
O(-0.26199082827818,-0.96507036318505)
O=>G(0.10370943688338)
P(0.47551334572094,-0.87970850742805)
P=>I(-0.10911694634698)
mathe
发表于 2019-6-29 22:37:10
另外圆形情况在n充分大时,所有区域都近似边长为a的六边形,可以得出田埂总长近似$3sqrt{{2pi n}/{3sqrt{3}}}-pi$,这个数值可以用来作为一个参考值。
于是如果一个n个区域的划分方案达到了长度$L_n$,那么我们可以把${3sqrt{{2pi n}/{3sqrt{3}}}-pi}/{L_n}$定义为这种方案的有效率
于是现在已知的最佳有效率为
nlratiowherewho
10---
2276.2%--
3385.7%42#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTE0MHw5NzFlYzlkYnwxNTYxMDA4NjQ1fDIwfDI3NDU%3D&noupdate=yesKeyTo9_Fans
43.94570296787.6%84# https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=ODkwN3w5MGM0ODJjNXwxNTYxMDA2MDA1fDIwfDI3NDU%3D&noupdate=yesmathe
54.83384664487.6%87#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=ODkyN3xmMjljYmIxNHwxNTU0MTgwMjY5fDIwfDE2MTA1&noupdate=yesmathe
65.4067969391.3%99#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTEwNnxjOWY1Yzg4N3wxNTYxMDExMzMzfDIwfDI3NDU%3D&noupdate=yesmathe
7693.1%95#
具体数据参考
数学星空的104#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTE3MHxjNDgyOTJlN3wxNTYxODU4NjA2fDIwfDI3NDU%3D&noupdate=yeszgg__
86.64723101893.1%104#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTE3MXwwZWM1YmI2OXwxNTYxODU4NjA2fDIwfDI3NDU%3D&noupdate=yes数学星空
97.31494334192.3%129#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTE2OXw0NjJjMTJiZXwxNTYxODUyMjg3fDIwfDI3NDU%3D&noupdate=yesmathe
107.83705523393.0%150#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTIxNXwxYmNmN2MxOHwxNTYzMDg2NDk2fDIwfDI3NDU%3D&noupdate=yesmathe
118.79563846088.7%104#数学星空
同样对于正方形,有效率可以定义为${3sqrt{{2 n}/{3sqrt{3}}}-2}/{L_n}$,得出当前已知最佳有效率为
nlratiowherewho
10---
2163.2%--
31.62327814475.4%13#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=MjI5NHxhMTgzYWZlM3wxNTYxMDA2NTAyfDIwfDI3NDU%3D&noupdate=yesKeyTo9_Fans
41.97559288587.2%13#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTE3M3xkMjBlZjA2YXwxNTYxODY1MzUyfDIwfDI3NDU%3D&noupdate=yesKeyTo9_Fans
52.50211293086.4%11#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=MjI5MnwwOWJmZDRhZXwxNTYxMDA2NTAyfDIwfDI3NDU%3D&noupdate=yesKeyTo9_Fans
62.93994625287.0%114#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTEzOXw1M2M0MWZmMnwxNTYxMDA2NzMzfDIwfDI3NDU%3D&noupdate=yesmathe
73.28072646489.1%116#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTE0MXwxOTk2NTFjMXwxNTYxMDExMTg0fDIwfDI3NDU%3D&noupdate=yesmathe
83.59784289290.7%116#https://bbs.emath.ac.cn/forum.php?mod=attachment&aid=OTIxNnwwYTFmMGQ1MXwxNTYzMDg2MTc3fDIwfDI3NDU%3D&noupdate=yesmathe