shshsh_0510 发表于 2011-9-16 08:35:34

好久没来了,出道小学题

前几天女儿上小学数学提高班,有道测验题不会做,说全班只他们两个不会,我费了半天劲,最后只得承认,要是在考场,我也做不出来,大家试试用多长时间:

A,B 两地距离 S ,a,b两人分别从A,B出发,速度分为Va ,Vb , 两人到达另一地点后,立即反回头继续走,问T时间内,相遇几次。

当然,原题所有变量都是定值,我为了给孩子讲透彻些,就换成了变量。我错了......

wayne 发表于 2011-9-16 08:44:08

1# shshsh_0510
要是换成变量了,允许我们列方程 画图吗?
:P

gxqcn 发表于 2011-9-16 17:03:18

感觉要画一个 位置—时间 坐标图来解答这个问题,数数两条曲线(各由折线构成)的交点数。

sheng_jianguo 发表于 2011-9-17 12:58:21

我分析一下,题目好像不难,就是要仔细分清楚(分析a与b在A(或B)相遇次数及最后一次是否在AB间是否相遇,没有花很多时间仔细验证,仅供参考):
不妨假设Va≥Vb
设Va/Vb=Na/Nb,其中当Va/Vb为分数时, Na/Nb为最简分数;当Va/Vb为无理数或整数时,Na=Va/Vb,Nb=1。
A)Na-Nb不是奇数(a与b在A(或B)不相遇)
1)【Va*T/S】-【Vb*T/S】为奇数,【X】为X去掉小数后的整数部分,下同
当Va*T-【Va*T/S】*S+Vb*T-【Vb*T/S】*S<S时
相遇次数=【Va*T/S】
当Va*T-【Va*T/S】*S+Vb*T-【Vb*T/S】*S≥S时
相遇次数=【Va*T/S】+1
2)【Va*T/S】-【Vb*T/S】为偶数
当Va*T-【Va*T/S】*S<Vb*T-【Vb*T/S】*S时
相遇次数=【Va*T/S】
当Va*T-【Va*T/S】*S≥Vb*T-【Vb*T/S】*S时
相遇次数=【Va*T/S】+1
B)Na-Nb是奇数
令To=Na*S/Va,m=【(T-To)/(2To)】+1,当T-To<0时m=0
n是按A)中各种情况计算得出的相遇次数
则这种情况下,相遇次数=n-m

hujunhua 发表于 2011-9-17 14:40:55

要是高中的话,我倒是真有一妙解——用三角函数。可惜是小学题,用不上。

mathe 发表于 2011-9-17 15:24:45

这道题目画图法容易理解

hujunhua 发表于 2011-9-17 15:51:27

我说的就是用数学软件绘图的取巧方法。用于实现2#、3#和6#的设想。
直接绘折线图,于手工较易,但是可用软件时,作三角函数的图像更简便。

hujunhua 发表于 2011-9-17 17:36:41

把题目的情节改编一下:a, b 两只蚂蚁沿一段长为S的悬空导线不停地爬行,爬到导线端头时回头……

导线弯曲成什么形状是没有影响的,只要不打结、自交。不管它原先是什么形状,我们现在把它弯成一个半圆弧!然后在连接AB的直线上建立数轴,原点O取在圆弧中心,OA方向为正。蚂蚁的位置就可用它在此数轴上的投影a(t)和b(t) 来反映,a(t) 和b(t)都是余弦函数。a(t)=b(t)时两者相会。或者c(t)=a(t)-b(t)=0时两者相会

056254628 发表于 2011-9-17 21:18:44

大家都想复杂了。其实题目很简单。
设$(V_a+V_b)*T=L$
若L不小于S,至少相遇一次
若L不小于3S,至少相遇两次
若L不小于5S,至少相遇三次。
----------------------------------------------
答案就是:相遇次数$n=[(+1)/2] $         []表示取整




056254628 发表于 2011-9-17 21:26:32

对于小学可以这么叙述:
$(V_a+V_b)*T/S$在某两个相邻的奇数之间 [k,k+2)
相遇次数就等于$(k+1)/2$
页: [1] 2 3 4 5 6
查看完整版本: 好久没来了,出道小学题