sheng_jianguo
发表于 2019-12-24 19:02:04
数学星空 发表于 2019-12-23 18:50
125# mathe的计算方法,我不太确定下面理解是否正确:
设变换前的四点坐标 \(Q=,V=
一些问题mathe已解答了,我再补充说一点:
一般射影变换矩阵S定义中规定R9=1(因为S中每个元素乘上非零常数c后的矩阵S‘与S是相同的射影变换)故你的矩阵T中可将第9列删去,并将其中Ql3改为Q3+Ql3;Vl3改为V3+Vl3;Ul3改为U3+Ul3;Nl3改为N3+Nl3,这样就是12X12阶矩阵了,R中将R9删去。很容易求解出R(如果有非零解),而且解是唯一的(说明4点到4点的射影变换最多只有1个)。要注意的是:当射影变换前的点比如Q(见129#)在对应射影变换后的点SQ中如果Z坐标SQz不等于0,则X,Y,Z坐标都需除以SQz后的点就是我们绘图中的坐标点。
数学星空
发表于 2019-12-24 19:11:08
经过反复选点,我们终于得到了想要的图形
以 \(X->, S[-0.2360679760, 0.309016994000000, 1.]->[-\frac{1}{2},-\frac{\sqrt{3}}{6},1], V->[\frac{1}{2},-\frac{\sqrt{3}}{6},1], A->\)
变换矩阵为
[, [-0.04811252262, 0.06962909663, -0.06962909663], ]
变换后坐标为:
[-3.00000024462111*10^(-11), -0., A], , [-0.149627095024728, -0.101143946313708, C], [-0.322001791407985, 0.0196268111827693, D], [-0.0527864047990069, -0.288675134646237, E], , [-0.0760143113346731, 0.0196268108758734, G], [-0.118033990310333, -0.288675134832972, H], , [-0.140734608613517, -0.153928202899481, J], [-0.290089366594055, 0.0749007527258173, K], , [-0.159719142240100, -0.0412393049053934, M], , , [-0.196723315733394, -0.0681469552981864, P], [-0.0457902735671232, -0.173895062156239, Q], [-3.58411239631470*10^(-10), -0.183524788248270, R], [-0.500000002363119, -0.288675135926141, S], [-0.0924746302707499, -0.101143945970514, T], [-0.0377045748401054, -0.0412393049586264, U], , [-1.48269315978281*10^(-10), -0.101143945937017, W],
画图得到:
数学星空
发表于 2019-12-24 19:50:55
108#结果:
L[-1.4142135620, -1., 1.]->[-1,1,1], P->[-1,-1,1], S->[-1,1,1], N->
变换矩阵为
[, [-0.108703732692843, 0.0636771722903307, 0.0636771722903305], ]
变换后坐标:
, , , , , , , , , , , [-1.00000000000000, 0.999999999999999, L], , , , [-1.00000000000000, -1.00000000000000, P], , , , , , , ,
画图得到:
数学星空
发表于 2019-12-25 18:57:57
对于92# 22棵28行计算结果:
第一种变换:
变换基点
D[-1.246979604, 2.801937736, 1]->[-1, 1, 1]
C-> [-1, -1, 1]
O->
N[-0.2469796037, 1.554958132]->
变换矩阵
[[-0.450167919201864,-6.11795566442781 10^(-12),-0.249824347570890],[-0.172883812629957,-0.277284106578026,0.249824347570891],]
变换后坐标
[-1.37765085332385, -0.529077088429172, A], [-1.97612527388360, 0.217208307592350, B], [-0.999999999999999, -1.00000000000000, C], [-1.00000000000000, 1.00000000000000, D], , , , , , , , [-9.09783467826472, 1.00000000025303, L], [-0.669362319332739, -0.0735738055107096, M], , , [-9.09783468215043, -5.49395920920715, P], [-1.66965331189807*10^(-12), -0.801937735764155, Q], [-3.49395920747015, -0.999999999999997, R], [-0.529077088614249, -0.529077088425881, S], , , [-4.95770268484256*10^(-11), -2.24697960405147, V]
作图得到:
第二种变换:
变换基点
Q[-0.5549581321, 0, 1]->[-cos((4*Pi)/7 - Pi/2), -sin((4*Pi)/7 - Pi/2), 1]
C->[-cos(Pi/2 - (2*Pi)/7), sin(Pi/2 - (2*Pi)/7), 1]
P->
N[-0.2469796037, 1.554958132, 1]->
变换矩阵
[,[-0.293597639237085,-7.30443255538140 10^(-11),-0.235447026039259],[-0.116301226369752,-0.354592825735578,0.261326483448076]]
变换后坐标
[-3.16557104729199, 2.52445866996847, A], , [-0.781831482400001, 0.623489802000000, C], , , [-3.94740253426969, -0.900968869732383, F], [-1.28790847455459*10^(-9), 4.04891733294242, G], , , [-2.19064313609670, -1.74697960662040, J], , , , , [-0.433883738605629, -0.900968868262603, O], , [-0.974927912200001, -0.222520934000000, Q], [-1.21571522162583, 2.52445866857690, R], [-2.73168730901066, 0.623489802421985, S], , [-1.75675939661644, -3.64794847941973, U],
作图得到:
数学星空
发表于 2019-12-25 19:39:03
mathe 发表于 2019-12-20 20:53
113#的一些解也可以试验一下,比如:
ADGJBEIJCDHKAFIKCEGLBFHLCJMODINODLMPAHNPGKOPBGMQFJNQAEOQEHMRBKNRC ...
127#提到的问题:
以AIFK为基点变换成正方形四个顶点得到的图形太丑陋了!
因此换了一种基点变换
D->[-1, 1, 1]
Q-> [-1, -1, 1]
S->
J->
变换矩阵
[,[-0.374776719546547,0.0884727821700311,0.374776719497110],[-0.374776719546547,0.0884727821700311,0.661080656812519]]
变换后坐标
[-0.236067977853743, 1.00000000000000, A], [-2.79390978395961*10^(-10), 0.618033988738628, B], [-0.0786893261452451, 0.745355992504937, C], [-1.00000000000000, 1.00000000000000, D], [-0.447213595738054, 0.447213595547152, E], [-1.72672981734630*10^(-10), -1.72672593956860*10^(-10), F], , [-2.97620595116178*10^(-10), 0.723606797717698, H], [-0.133830541655888, 0.566915270678380, I], , [-0.182743997952620, 0.774115996442465, K], [-3.12368638987683*10^(-10), 0.809016994363016, L], , , [-0.358570173921346, 0.679285086849915, O], [-0.0871677260125080, 0.825664548605471, P], [-0.999999999999997, -0.999999999999995, Q], [-0.0717140350265245, 0.679285086803935, R], ,
作图得到:
数学星空
发表于 2019-12-25 22:24:25
mathe 发表于 2019-12-24 15:13
75#的20棵树23行可以做出一种更加对称的形式,只是直线CDJK是无穷远直线:
对于这个情况可以得到:
变换基点:
T->[-1, 1, 1]
P->[-1, -1, 1]
S->
R->
变换矩阵
[[-0.0432831484963104,-0.0432831485356885,-0.0347103901407741],[-0.393782929673780,0.151229555324098,0.121276687176910],[-0.393782929673780,-0.393782929634402,0.666289172135409]]
变换后坐标
, , [-0.286208264194413, -1.00000000012933, C], [-0.286208264231225, -0.286208264216836, D], [-0.445041867958698, -1.61657463873974*10^(-11), E], , [-0.198062264217136, 2.07729034328235*10^(-11), G], , , [-0.286208264297558, 1.00000000000000, J], [-0.286208264260746, 0.286208264220178, K], [-5.87429297921351*10^(-12), -5.84312697869233*10^(-12), L], [-0.0520950836249219, 0.182018097019687, M], [-0.131166769277656, 0.217208307702169, N], [-0.131166769250385, -0.217208307721898, O], [-1.00000000000000, -1.00000000000000, P], [-0.0520950835999899, -0.182018097022159, Q], , , [-0.999999999999999, 1.00000000000000, T]
画图得到:
mathe
发表于 2019-12-31 09:23:36
转化自https://www2.stetson.edu/~efriedma/trees/ 的23棵树28行整数解
A(+0,+0)
B(1/3,+1)
C(1/2,3/2)
D(5/6,5/2)
E(-1/6,1/2)
F(+0,+1)
G(1/3,2)
H(1/2,5/2)
I(-1/6,3/2)
J(+0,2)
K(-1/6,5/2)
L(-1,4)
M[+1,1,0];
N[+1,+0,0];
O[+1,-1,0];
P[+0,+1,0];
Q(+1,+0)
R(+1,+1)
S(5/6,1/2)
T(+1,2)
U(5/6,3/2)
V(1/2,1/2)
W(1/3,+0)
wayne
发表于 2019-12-31 13:11:14
数学星空 发表于 2019-12-25 22:24
对于这个情况可以得到:
变换基点:
1)浮点数不太靠谱,可否贴出代数数。
2)图可以做的再精致一点。尽量对称一些,然后咱们论坛的博客就可以直接拿来引用了
mathe
发表于 2019-12-31 14:38:43
对前面23棵28行添加一棵树两行得到24棵30行
mathe
发表于 2019-12-31 19:20:19
25棵32行整数解:
A(+1,3/2)
B[+0,+1,0];
C(+1,+0)
D(+1,2/3)
E(3/2,2)
F[+1,2,0];
G(3/4,1/2)
H(5/6,2/3)
I(+0,+0)
J(1/2,1/2)
K(1/2,2/3)
L(5/12,5/6)
M(3/2,+1)
N[+1,+0,0];
O(+0,+1)
P(3/4,+1)
Q(3/10,6/5)
R(5/16,5/4)
S(1/4,3/2)
T[+1,-1,0];
U(+0,2)
V(5/4,1/2)
W(3/2,+0)
X(1/2,2)
Y(3/4,3/2)
ABCDAFJPANSYAMTXBEMWBFNTBIOUBJKXBGPYCFMVCINWCJOTCHPXCGSUDGIMDHKNDPUWEFGHEIKPENUXEOQYFILYFOSXGJNVGKOWHLOVHQTWIQRXJLRSMNOPPSTVVWXY