mathe
发表于 2019-12-2 15:18:36
21棵树24行的新结果
A(t+(t-1)^2,2-t-(t-1)^2)
B(1-2*t-(t-1)^2,t)
C((t-1)^2,1-(t-1)^2)
D(1-2*t-(t-1)^2,-(t-1)^2)
E(-t,1-t-(t-1)^2)
F(1-t,2-t-(1-t)^2)
G[+1,t-2,0];
H(+0,+1)
I(+1,+0)
J(-t,+0)
K[+1,1-(t-1)^2,0];
L(+0,-(t-1)^2)
M(1-2*t-(t-1)^2,1-t-(t-1)^2)
N(1-t,-(t-1)^2)
O(-t,2-t-(t-1)^2)
P(1-t,1-(t-1)^2)
Q(t+(t-1)^2,1-t-(t-1)^2)
R(t+(t-1)^2,1-(t-1)^2)
S[+0,+1,0];
T(+0,+0)
U[+1,+0,0]; DJKPEKLRFJLQGKSUHLSTIJTUEJOSFKMTDLNUFNPSEMQUDORTHMOPIMNRGNOQAGIPBGHRCHIQCPRUBPQTAQRSBDMSAFOUCENT
(自同构 A->C->B-A, D->F->E->D, G->I->H->G, J->L->K->J, M->O->N->M, P->Q->R->P, S->U->T->S)
[+1*t^2+4*t+2]
A(-1-t,+1)
B(+1,7+2*t)
C(-1-2*t,-3-t)
D(-1/2*t,-1-1/2*t)
E(-2-t,7+2*t)
F(-1-2*t,4+t)
G(+1,+0)
H[+1,-17-5*t,0];
I(+0,+1)
J(+0,4+t)
K[+1,-5-3/2*t,0];
L(-1/2*t,+0)
M(-1-t,4+t)
N(-1/2*t,2+1/2*t)
O(-t,-3-t)
P(-1-t,7+2*t)
Q(+1,-3-t)
R(-1-2*t,+1)
S[+0,+1,0];
T(+0,+0)
U[+1,+0,0];
FGKPEILQDHJRHKSUIJSTGLTUDLNSFJMUEKOTLOPRJNPQKMQRDIMOFHNOEGMNCHPTBGQSAIRUBEPUCFRSADQTAMPSCOQUBNRT
(自同构A->C->B->A,D->F->E->D,G->I->H->G,J->K->L->J,M->O->N->M,P->Q->R->P, S->U->T->S)
A(1/4,+1)
B(+1,2/3)
C(3/2,4)
D(+0,+1)
E(+1,+0)
F[+1,8/3,0];
G[+1,-4/3,0];
H(-1/2,+0)
I(+0,-2)
J(-1/2,2/3)
K(-1/2,-2)
L(3/2,-2)
M(1/2,4/3)
N(3/4,+1)
O(+1,2)
P(1/2,2)
Q(1/2,2/3)
R(3/2,2)
S[+0,+1,0];
T(+0,+0)
U[+1,+0,0];
HJKSGJLTIKLUFGSUDISTEHTUBFIRAEGQCDHPBEOSADNUCFMTCLRSBJQUAKPTDJMRFKOQELNPCINOAHMOBGMNMPQSOPRUNQRT
(自同构A->B->C->A,D->E->F->D,G->I->H->G,J->L->K->J, M->N->O->M, P->Q->R->P, S->T->U->S)
A(1/2,-1)
B(-1,3/2)
C(2/3,2)
D(+1,-2)
E(2/3,+1)
F(-1/2,3/2)
G(1/2,-3/2)
H(-2/3,+1)
I(+1,2)
J(1/2,3/2)
K(-1,2)
L(2/3,-1)
M(+0,+1)
N(+1,+0)
O[+1,-3,0];
P(+0,-1)
Q[+1,3,0];
R(-1,+0)
S[+0,+1,0];
T(+0,+0)
U[+1,+0,0];
OQSUMPSTNRTUEJNODLMOFKMNIJMRGLNQHKOPEIPQFHQRDGPRDINSEHMUFGOTCJQTBKRSALPUBFJUCELSADKTAGJSCIKUBHLT
(自同构A->C->B-A,D->E->F->D,G->I->H->G,J->K->L->J,M->O->N->M,P->Q->R->P,S->U->T->S)
mathe
发表于 2019-12-6 08:36:44
21棵24行复数解
[+1*t^2+5*t+7]
-1*v11-1*t
+1*v0+1
+1*v1-1*v11+3
+1*v2+1*v11-4
+1*v3+1*v11-3
+1*v4-1*v11+2
+1*v5-1*v11+1
+1*v6+1*v11-3
+1*v7-1*v11+2
+1*v8-1*v11+3
+1*v9+1*v11-2
+1*v10+1*v11-5
A(v3,v2)
B(v5,v4)
C(+0,+1)
D(+1,+0)
E(v7,v6)
F(v8,v6)
G(v7,v9)
H(+0,+0)
I(v5,v2)
J(v10,v4)
K(v3,v11)
L(+0,v2)
M(+1,v4)
N(v3,+1)
O(v5,+0)
P(+1,v6)
Q(v7,+1)
R[+1,v0,0];
S[+1,+0,0];
T[+1,v1,0];
U[+0,+1,0];
FGHRIJKRCDERRSTUCHLUDHOSEFPSCFMTEGQUDGNTGKLMFJNOHIPQELOTCNQSDMPULNPRMOQRAILSBJMSAKNUBIOUBKQTAJPT
[+1*t^4+5*t^3+8*t^2+4*t+1]
-1*v10-1*t
-1*v12+1*t^3+4*t^2+5*t+2
-1*v13-1*t^2-3*t-1
+1*v0+1*v12+1*v13
+1*v1-1*v10+1*v12+1*v13
+1*v2-1*v10-1*v12+1
+1*v3-1*v12
+1*v4-1*v10+1*v13
+1*v6+1*v10-2
+1*v11+1*v12+1*v13-1
+1*v5+1*v10+1*v12-1*v13-2
+1*v7+2*v10+2*v12-2*v13-3
+1*v8+6/7*v10+5/7*v12-4/7*v13-10/7
+1*v9-2/7*v10-4/7*v12-1/7*v13+1/7
A(v7,v2)
B(v8,v9)
C(+1,+0)
D(v3,v10)
E(v3,+1)
F(+1,v11)
G(v3,v4)
H(+1,v4)
I[+1,+0,0];
J(+0,+1)
K(+0,+0)
L(+0,v12)
M[+1,v0,0];
N[+1,v1,0];
O(v5,v2)
P(v6,v2)
Q(v6,v13)
R(v6,+1)
S(v5,v4)
T(v5,+0)
U[+0,+1,0];
IMNUJKLUPQRUOSTUCFHUDEGUCIKTEIJRDKNQFJMSGLMPHLNOGHISCELQFGKREFNTDHJPCDMOAIOPBLRTBKPSBJOQAMQTANRS
[+1*t^4+5*t^3+8*t^2+4*t+1]
-1*v10-1*t
-1*v12-1*t^2-2*t
-1*v13-1*t^3-5*t^2-7*t-1
+1*v1-1*v12+1*v13
+1*v0-1*v12+1*v13-1
+1*v2+1*v12-1*v13
+1*v3+1*v12
+1*v4-1*v10-1*v12+1
+1*v5-1*v10+1
+1*v6-1*v10-1*v12+1*v13
+1*v9+1
+1*v11-1*v12+1*v13-1
+1*v7-4/7*v10-1/7*v12+2/7*v13-2/7
+1*v8-2/7*v10-4/7*v12+1/7*v13-1/7
A(v7,v8)
B(v9,v2)
C(+1,+0)
D(v3,v10)
E(v3,v2)
F(v3,v4)
G(+1,v11)
H(+1,+1)
I(v5,+1)
J(v6,v12)
K(+0,+1)
L[+1,v0,0];
M(+0,+0)
N[+1,v1,0];
O(+0,v2)
P[+1,+0,0];
Q(v6,v4)
R(v5,v4)
S(v5,v13)
T(v6,+0)
U[+0,+1,0];
LNPUKMOUIRSUJQTUCGHUDEFUCMPTCNOSGLMRHLOQFPQRFKSTHIKPGJKNDJORDINTEIMQEJLSACIJBEOPBFMNBDKLAHRTAGQS
mathe
发表于 2019-12-6 09:09:15
22棵树28行的实数解
[+1*t^3+6*t^2+5*t+1]
A[+1,+0,0];
B[+1,1*t-2*(1*t^2+6*t+3)+2,0];
C[+1,+1,0];
D(-1*(1*t^2+6*t+3),-1*t+2*(1*t^2+6*t+3))
E(+1,-1*(1*t^2+6*t+3))
F(1*t-1*(1*t^2+6*t+3)+1,1*t+1)
G(-t,-2*t+1*(1*t^2+6*t+3)-1)
H(-t,-t)
I(1*t-1*(1*t^2+6*t+3)+1,(1*t^2+6*t+3))
J(-1*(1*t^2+6*t+3)+1,-1*t+1*(1*t^2+6*t+3)-1)
K(+0,+1)
L(+1,+0)
M(-1*(1*t^2+6*t+3),-1*t+1*(1*t^2+6*t+3))
N(-1*(1*t^2+6*t+3)+1,-1*t+1*(1*t^2+6*t+3))
O(+0,+0)
P(-t,-1*t+1*(1*t^2+6*t+3))
Q(1*t-1*(1*t^2+6*t+3)+1,+0)
R(+1,+1)
S(-1*(1*t^2+6*t+3),-1*t+1*(1*t^2+6*t+3)-1)
T(-1*(1*t^2+6*t+3)+1,+1)
U(+0,-1*t+1*(1*t^2+6*t+3)-1)
V[+0,+1,0];
ABCVKOUVJNTVDMSVELRVGHPVFIQVALOQAMNPAJSUAKRTJKPQEHKNDIJOFHJLGIKMDETUEFMODGLNFGRSCHORCINSBHMUBILTBEQSBDPRCGQUCFPT
mathe
发表于 2019-12-10 08:29:48
25棵35行复数解:
[+1*t^4+4*t^3+8*t^2+5*t+1]
A(-2*t^3 - 7*t^2 - 12*t - 3,t^3 + 4*t^2 + 7*t + 3)
B(-2*t^3 - 7*t^2 - 12*t - 4,t^2 + t + 1)
C(-t^3 - 4*t^2 - 8*t - 3,-t^3 - 4*t^2 - 6*t - 1)
D(-2*t^3 - 7*t^2 - 12*t - 4,-t)
E(+1,+0)
F(+1, -t^3 - 4*t^2 - 7*t - 2)
G(-t^3 - 4*t^2 - 8*t - 3, -t^3 - 4*t^2 - 7*t - 2)
H(+1,t+1)
I(-2*t^3 - 7*t^2 - 12*t - 3,+0)
J(-t^3 - 4*t^2 - 8*t - 3,t+1)
K(-2*t^3 - 7*t^2 - 12*t - 3, -t^3 - 3*t^2 - 5*t - 1)
L(-2*t^3 - 7*t^2 - 12*t - 4, -t^3 - 3*t^2 - 5*t - 1)
M[+1,+0,0];
N(-3*t^3 - 11*t^2 - 20*t - 7,+1)
O(-2*t^3-7*t^2-13*t-4,+1)
P(+0,+1)
Q[+1,t^3 + 3*t^2 + 6*t + 2,0];
R[+1,t,0];
S(-2*t^3-7*t^2-13*t-4,1*t^3+3*t^2+5*t+2)
T(+0,-2*t^3-7*t^2-13*t-4)
U(+0,+0)
V(-3*t^3 - 11*t^2 - 20*t - 7,t+1)
W(-2*t^3-7*t^2-13*t-4, -t^3 - 4*t^2 - 7*t - 2)
X(-3*t^3 - 11*t^2 - 20*t - 7, -t^3 - 3*t^2 - 5*t - 1)
Y[+0,+1,0];
EFHYCGJYAIKYBDLYMQRYPTUYNVXYOSWYFGMWKLMXHJMVEIMUHKUWCLVWBCSTADUXEJRSFKQTEGQXDIRVILNTFIPSGLOUAEOTBKPVDJPWBJOXDGNSAHPRCFNRCHOQABNQMNOPRTWXQSUV
mathe
发表于 2019-12-10 08:40:06
另外,我一直在猜测,每行四棵树的方案中得出的解是不是所有代数数都是不超过四次方程的解,结果发现25棵树的
ABCYLRTYHSUYIPXYJVWYKOQYEFNYDGMYAMRXAPSVAOTUANQWLNSXMNTVKMUWEPRUDJQSEIMODKNPGHOVFHITEGJLDFRWFGQXBHLQCKRSCHWXBIJUCDILBEKVBGPTCFJO
方案违反了这个规律,在openf4中求解的结果应该是满足8次方程的一个复数,只是由于openf4只能使用不超过65536的素数阶,而这个方程的系数会越界,所以无法求出对应的复数解,比如在65521阶有限域中求得的解为:
[+1*t^8+2*t^7-3*t^6-10*t^5+2*t^4+4*t^3+10*t^2+6*t+1]
-1*v15+9424*t^7+22273*t^6+61229*t^5+59074*t^4-41/28*t^3-35/67*t^2+59978*t+28700
-1*v11+12/17*t^7+65/51*t^6-41/17*t^5+2563*t^4+47538*t^3+1287*t^2+5145*t+20558
-1*v12+65093*t^7+18843*t^6+29976*t^5-88/51*t^4+27409*t^3+26123*t^2+17131*t+39399
-1*v14+1712*t^7+55670*t^6-57/100*t^5+60390*t^4+21406*t^3+26550*t^2+62514*t+38969
-1*v16+89/51*t^7+49/17*t^6+17980*t^5+5124*t^4+51398*t^3+24413*t^2+32133*t+87/17
-1*v17+56099*t^7+21411*t^6+4285*t^5+28270*t^4+13272*t^3+50531*t^2+49241*t+14986
-1*v13-1*t
+1*v1+1*v12+1*v15-2*v16+1
+1*v0+1*v11-1*v14-1*v15+1*v17+2
+1*v2-1*v11-1*v13+1*v14+1*v15-2
+1*v5+1*v15-1
+1*v7+1*v11+1*v13-1*v14-1*v16+1
+1*v9-1*v14-1*v15+1
+1*v3+1*v12+2*v14+3*v15-2*v16-3
+1*v4-1*v11+1*v12-1*v13+1*v14+2*v15-1*v16-3
+1*v6-1*v13+1*v14-2
+1*v8-1*v11-1*v13+1*v14+1*v15-1*v17-2
+1*v10+1*v12+1*v15-2*v16
A[+1,+0,0];
B[+1,v0,0];
C[+1,v1,0];
D(+1,v10)
E(v2,v11)
F(v2,v12)
G(+1,v13)
H(v3,v14)
I(v4,v15)
J(v5,v16)
K(v6,v17)
L(+0,+1)
M(+1,+0)
N(v2,v7)
O(v6,v8)
P(v4,v9)
Q(v6,v7)
R(+0,+0)
S(v3,v9)
T(+0,v8)
U(v3,v8)
V(v5,v9)
W(v5,v7)
X(v4,+0)
Y[+0,+1,0];
ABCYLRTYHSUYIPXYJVWYKOQYEFNYDGMYAMRXAPSVAOTUANQWLNSXMNTVKMUWEPRUDJQSEIMODKNPGHOVFHITEGJLDFRWFGQXBHLQCKRSCHWXBIJUCDILBEKVBGPTCFJO
而对应复数域的方程组为: (挑选的坐标系和上面的方法不同,所以最终坐标也不同),不知道有谁是否可以用数学工具试一下看看。
solve([+1+6/5*S_Y*X_X-1*U_Y*X_X-1/5*W_X*X_X-2/5*W_Y*X_X+1/5*X_X*X_X-1/5*X_Y+2/5*Q_Y*X_Y-2/5*R_Y*X_Y+2/5*S_Y*X_Y-8/5*U_X*X_Y-7/5*U_Y*X_Y+3/5*W_X*X_Y+1/5*X_X*X_Y-2/5*X_Y*X_Y,+1*K_Y-4/5*S_Y*X_X-1*U_Y*X_X-1/5*W_X*X_X+3/5*W_Y*X_X+1/5*X_X*X_X-6/5*X_Y+7/5*Q_Y*X_Y-7/5*R_Y*X_Y+7/5*S_Y*X_Y+2/5*U_X*X_Y-17/5*U_Y*X_Y-2/5*W_X*X_Y+11/5*X_X*X_Y-7/5*X_Y*X_Y,+1*Q_Y+2/5*S_Y*X_X-1*U_Y*X_X-2/5*W_X*X_X+1/5*W_Y*X_X+2/5*X_X*X_X-12/5*X_Y+9/5*Q_Y*X_Y-9/5*R_Y*X_Y+9/5*S_Y*X_Y-1/5*U_X*X_Y-19/5*U_Y*X_Y+1/5*W_X*X_Y+12/5*X_X*X_Y-9/5*X_Y*X_Y,+1*Q_Y*Q_Y-1*R_Y*R_Y+2*R_Y*S_Y-1*S_Y*S_Y+4*S_Y*U_Y-2*U_Y*U_Y+2/5*S_Y*X_X+4*U_Y*X_X+3/5*W_X*X_X-9/5*W_Y*X_X-13/5*X_X*X_X+18/5*X_Y-11/5*Q_Y*X_Y+1/5*R_Y*X_Y-1/5*S_Y*X_Y-31/5*U_X*X_Y+11/5*U_Y*X_Y+1/5*W_X*X_Y-3/5*X_X*X_Y+6/5*X_Y*X_Y,+1*R_Y+1*X_X*X_Y,+1*Q_Y*R_Y-1*R_Y*R_Y+1*R_Y*S_Y+8/5*S_Y*X_X+1*U_Y*X_X+2/5*W_X*X_X-6/5*W_Y*X_X-2/5*X_X*X_X+12/5*X_Y-9/5*Q_Y*X_Y+4/5*R_Y*X_Y-9/5*S_Y*X_Y-14/5*U_X*X_Y+24/5*U_Y*X_Y+4/5*W_X*X_Y-7/5*X_X*X_Y+9/5*X_Y*X_Y,+1*S_Y-6/5*S_Y*X_X+1/5*W_X*X_X+2/5*W_Y*X_X-1/5*X_X*X_X-4/5*X_Y+3/5*Q_Y*X_Y-3/5*R_Y*X_Y+3/5*S_Y*X_Y+3/5*U_X*X_Y-3/5*U_Y*X_Y-3/5*W_X*X_Y+4/5*X_X*X_Y-3/5*X_Y*X_Y,+1*Q_Y*S_Y-1*R_Y*S_Y+1*S_Y*S_Y-2*S_Y*U_Y-1*U_Y*U_Y-8/5*S_Y*X_X+1*U_Y*X_X-2/5*W_X*X_X+1/5*W_Y*X_X-3/5*X_X*X_X-2/5*X_Y-1/5*Q_Y*X_Y+1/5*R_Y*X_Y-6/5*S_Y*X_Y+9/5*U_X*X_Y+11/5*U_Y*X_Y-4/5*W_X*X_Y-3/5*X_X*X_Y+1/5*X_Y*X_Y,+1*U_X+4/5*S_Y*X_X-4/5*W_X*X_X-3/5*W_Y*X_X-1/5*X_X*X_X-4/5*X_Y+3/5*Q_Y*X_Y-3/5*R_Y*X_Y+3/5*S_Y*X_Y-7/5*U_X*X_Y-8/5*U_Y*X_Y+2/5*W_X*X_Y+4/5*X_X*X_Y-3/5*X_Y*X_Y,+1*Q_Y*U_X+1*S_Y*U_Y+4/5*S_Y*X_X+1*U_X*X_X-4/5*W_X*X_X-3/5*W_Y*X_X-1/5*X_X*X_X-14/5*X_Y+8/5*Q_Y*X_Y-8/5*R_Y*X_Y+8/5*S_Y*X_Y-2/5*U_X*X_Y-13/5*U_Y*X_Y+2/5*W_X*X_Y+9/5*X_X*X_Y-8/5*X_Y*X_Y,+1*R_Y*U_X-6/5*S_Y*X_X+1/5*W_X*X_X+2/5*W_Y*X_X-1/5*X_X*X_X-4/5*X_Y+3/5*Q_Y*X_Y-3/5*R_Y*X_Y+3/5*S_Y*X_Y+8/5*U_X*X_Y-3/5*U_Y*X_Y-3/5*W_X*X_Y+4/5*X_X*X_Y-3/5*X_Y*X_Y,+1*S_Y*U_X-1*S_Y*U_Y-2*U_Y*U_Y-26/5*S_Y*X_X+2*U_X*X_X+6*U_Y*X_X-9/5*W_X*X_X-13/5*W_Y*X_X-6/5*X_X*X_X+11/5*X_Y-17/5*Q_Y*X_Y+17/5*R_Y*X_Y-17/5*S_Y*X_Y+33/5*U_X*X_Y+62/5*U_Y*X_Y-3/5*W_X*X_Y-31/5*X_X*X_Y+17/5*X_Y*X_Y,+1*U_Y-1*U_Y*X_X-1*X_Y+1*Q_Y*X_Y-1*R_Y*X_Y+1*S_Y*X_Y-2*U_Y*X_Y+1*X_X*X_Y-1*X_Y*X_Y,+1*Q_Y*U_Y+1*S_Y*U_Y-2*U_Y*U_Y-4/5*S_Y*X_X+2*U_Y*X_X-1/5*W_X*X_X-2/5*W_Y*X_X-4/5*X_X*X_X+4/5*X_Y-3/5*Q_Y*X_Y+3/5*R_Y*X_Y-3/5*S_Y*X_Y-3/5*U_X*X_Y+8/5*U_Y*X_Y-2/5*W_X*X_Y-4/5*X_X*X_Y+3/5*X_Y*X_Y,+1*R_Y*U_Y+4/5*S_Y*X_X+1*U_Y*X_X+1/5*W_X*X_X-3/5*W_Y*X_X-1/5*X_X*X_X+6/5*X_Y-7/5*Q_Y*X_Y+7/5*R_Y*X_Y-7/5*S_Y*X_Y-7/5*U_X*X_Y+17/5*U_Y*X_Y+2/5*W_X*X_Y-6/5*X_X*X_Y+7/5*X_Y*X_Y,+1*U_X*U_Y-1*U_Y*U_Y-9/5*S_Y*X_X+1*U_X*X_X+2*U_Y*X_X-6/5*W_X*X_X-7/5*W_Y*X_X-4/5*X_X*X_X-1/5*X_Y-3/5*Q_Y*X_Y+3/5*R_Y*X_Y-3/5*S_Y*X_Y+12/5*U_X*X_Y+18/5*U_Y*X_Y-2/5*W_X*X_Y-9/5*X_X*X_Y+3/5*X_Y*X_Y,+1*W_X+7/5*S_Y*X_X+1*U_X*X_X-7/5*W_X*X_X-4/5*W_Y*X_X+2/5*X_X*X_X+3/5*X_Y-1/5*Q_Y*X_Y+1/5*R_Y*X_Y-1/5*S_Y*X_Y-1/5*U_X*X_Y+1/5*U_Y*X_Y-4/5*W_X*X_Y-3/5*X_X*X_Y+1/5*X_Y*X_Y,+1*K_Y*W_X+1/5*S_Y*X_X+1*U_X*X_X-6/5*W_X*X_X-2/5*W_Y*X_X+1/5*X_X*X_X-1/5*X_Y+2/5*Q_Y*X_Y-2/5*R_Y*X_Y+2/5*S_Y*X_Y+7/5*U_X*X_Y-2/5*U_Y*X_Y-7/5*W_X*X_Y+1/5*X_X*X_Y-2/5*X_Y*X_Y,+1*R_Y*W_X-2/5*S_Y*X_X+2/5*W_X*X_X-1/5*W_Y*X_X-2/5*X_X*X_X-3/5*X_Y+1/5*Q_Y*X_Y-1/5*R_Y*X_Y+1/5*S_Y*X_Y+1/5*U_X*X_Y-1/5*U_Y*X_Y+4/5*W_X*X_Y+3/5*X_X*X_Y-1/5*X_Y*X_Y,+1*S_Y*W_X-1/5*S_Y*X_X-1*U_Y*X_X+1/5*W_X*X_X+2/5*W_Y*X_X-1/5*X_X*X_X+1/5*X_Y+3/5*Q_Y*X_Y-3/5*R_Y*X_Y+3/5*S_Y*X_Y-2/5*U_X*X_Y-8/5*U_Y*X_Y-8/5*W_X*X_Y+4/5*X_X*X_Y-3/5*X_Y*X_Y,+1*U_Y*W_X+3/5*S_Y*X_X+1*U_X*X_X-3/5*W_X*X_X-6/5*W_Y*X_X-2/5*X_X*X_X+2/5*X_Y+1/5*Q_Y*X_Y-1/5*R_Y*X_Y+1/5*S_Y*X_Y+1/5*U_X*X_Y-1/5*U_Y*X_Y-6/5*W_X*X_Y-2/5*X_X*X_Y-1/5*X_Y*X_Y,+1*W_Y-2/5*S_Y*X_X+2/5*W_X*X_X-1/5*W_Y*X_X-2/5*X_X*X_X-8/5*X_Y+6/5*Q_Y*X_Y-6/5*R_Y*X_Y+6/5*S_Y*X_Y-4/5*U_X*X_Y-11/5*U_Y*X_Y+4/5*W_X*X_Y+8/5*X_X*X_Y-6/5*X_Y*X_Y,+1*Q_Y*W_Y-1*R_Y*W_Y+1*S_Y*W_Y-7/5*S_Y*X_X-1*U_X*X_X-2*U_Y*X_X+7/5*W_X*X_X+9/5*W_Y*X_X-2/5*X_X*X_X-8/5*X_Y+11/5*Q_Y*X_Y-11/5*R_Y*X_Y+11/5*S_Y*X_Y-9/5*U_X*X_Y-31/5*U_Y*X_Y+4/5*W_X*X_Y-1*W_Y*X_Y+18/5*X_X*X_Y-11/5*X_Y*X_Y,+1*U_X*W_Y+1/5*S_Y*X_X+1*U_X*X_X+1*U_Y*X_X-1/5*W_X*X_X-7/5*W_Y*X_X-4/5*X_X*X_X-1/5*X_Y+2/5*Q_Y*X_Y-2/5*R_Y*X_Y+2/5*S_Y*X_Y-3/5*U_X*X_Y-2/5*U_Y*X_Y-2/5*W_X*X_Y+1/5*X_X*X_Y-2/5*X_Y*X_Y,+1*U_Y*W_Y-1*S_Y*X_X-1*U_X*X_X-1*U_Y*X_X+1*W_X*X_X+1*W_Y*X_X-1*X_Y+1*Q_Y*X_Y-1*R_Y*X_Y+1*S_Y*X_Y-1*U_X*X_Y-3*U_Y*X_Y+1*W_X*X_Y+2*X_X*X_Y-1*X_Y*X_Y,+1*X_X+6/5*S_Y*X_X-1*U_Y*X_X-1/5*W_X*X_X-2/5*W_Y*X_X+1/5*X_X*X_X+4/5*X_Y-3/5*Q_Y*X_Y+3/5*R_Y*X_Y-3/5*S_Y*X_Y-3/5*U_X*X_Y+3/5*U_Y*X_Y+3/5*W_X*X_Y-4/5*X_X*X_Y+3/5*X_Y*X_Y,+1*K_Y*X_X+2/5*S_Y*X_X-1*U_Y*X_X-2/5*W_X*X_X+1/5*W_Y*X_X+2/5*X_X*X_X-7/5*X_Y+4/5*Q_Y*X_Y-4/5*R_Y*X_Y+4/5*S_Y*X_Y-1/5*U_X*X_Y-9/5*U_Y*X_Y+1/5*W_X*X_Y+7/5*X_X*X_Y-4/5*X_Y*X_Y,+1*Q_Y*X_X+6/5*S_Y*X_X-1*U_Y*X_X-1/5*W_X*X_X-2/5*W_Y*X_X+6/5*X_X*X_X-1/5*X_Y-3/5*Q_Y*X_Y+3/5*R_Y*X_Y-3/5*S_Y*X_Y+2/5*U_X*X_Y+8/5*U_Y*X_Y+3/5*W_X*X_Y-4/5*X_X*X_Y+3/5*X_Y*X_Y,+1*R_Y*X_X-1*X_Y+1*X_X*X_Y,-1+1*J_Y+1*Q_Y-1*R_Y+1*S_Y-2*U_Y+1*X_X-1*X_Y,+1*C_X-1*Q_Y+1*R_Y-1*S_Y+2*U_Y-1*X_X+1*X_Y,+1*L_Y-1*R_Y-1*X_Y,-1+1*D_Y-1*R_Y+1*X_X,-1+1*C_Y-1*R_Y-1*S_Y,-1+1*P_Y-1*R_Y-1*X_Y,-1+1*H_Y+1*X_X,+1*P_X-1*X_X,+1*J_X-1*W_X,+1*B_X-1*Q_Y+1*R_Y-1*S_Y+2*U_Y-1*X_X+1*X_Y,-1+1*K_X+1*U_Y,-1+1*D_X,-1+1*F_Y+1*X_X,-1+1*Q_X+1*U_Y,+1*S_X-1*U_X,+1*A_Y-1*U_Y,-1+1*I_Y+1*X_X,+1*H_X-1*U_X,-1+1*G_X,+1*O_Y-1*U_Y,+1*I_X-1*X_X,-1+1*O_X+1*U_Y,-1+1*G_Y-1*R_Y-1*X_Y,-1+1*B_Y-1*R_Y-1*X_Y,+1*V_X-1*W_X,+1*A_X-1*Q_Y+1*R_Y-1*S_Y+2*U_Y-1*X_X+1*X_Y],);
print("E_x=0 E_y=1 F_x=0 L=(1,L_y,0) M_x=1 M_y=0 N_x=0 N_y=0 R=(1,R_y,0) T=(1,0,0) V_y=0 Y=(0,1,0) ");
mathe
发表于 2019-12-10 22:07:10
21棵24行 https://www2.stetson.edu/~efriedma/trees/ 提供了一个结果,可以转化为
A= B=(1,0) C= D=(1/2, 1) E=(5/8,3/4) F=(0,1) G=(3/8,3/4)
H=(1/4,3/4) I= J=(0,1/2) K=(3/8,1/2) L=(1/2,1/2) M=(1/4,1/3) N=(1/8,1/4)
O=(1/3,1/3) P=(0,0) Q=(3/8,1/4) R= S=(1/4,0) T=(1/2,1/4) U=(7/12,1/3)
ACIRAFJPAHMSADLTAGKQBCDEBFHLBJOTBIPSCJNSCFOQCHKTCGLUDHJRDGNPDKOSEGHIEKNRELQSIJKLRSTUINQTIMOULOPR
(不对称)
wayne
发表于 2019-12-10 22:08:42
我在4#好像是稍微改了下solve8.cpp,使得输出的格式方便Mathematica转化成 方程组。 现在代码找不到了,只知道改后的输出是这种:
ADGJBEIJCDHKAFIKCEGLBFHLCJMODINODLMPAHNPGKOPBGMQFJNQAEOQEHMRBKNRCFPRILQRABCSDEFSGHITJKLTMNST
+1+3*Ty+1*Ty*Ty,-3/5+1*Ry-2/5*Ty,-4/5+1*Rx-1/5*Ty,-3+1*Hx-1*Ty,-4+1*Px-1*Ty,+1+1*Sx,-2+1*Qx-1*Ty,+2+1*Ox+1*Ty,-1+1*Ly-1*Ty,+1+1*Py,-3+1*My-2*Ty,+1+1*Dy+1*Ty,-2+1*Sy-1*Ty,+1*Gy-1*Ty,-1+1*Qy,+1+1*Ny,-2+1*Cy-1*Ty,-2+1*By-1*Ty,-1+1*Oy,+1+1*Hy,+2+1*Cx+1*Ty,-2+1*Nx-1*Ty,-1+1*Lx,-1+1*Tx,+2+1*Mx+1*Ty,-2+1*Fx-1*Ty
Ty,Ry,Rx,Hx,Px,Sx,Qx,Ox,Ly,Py,My,Dy,Sy,Gy,Qy,Ny,Cy,By,Oy,Hy,Cx,Nx,Lx,Tx,Mx,Fx
Ax=1,Ay=0,Az=0,Bx=0,Bz=1,Dx=1,Dz=0,Ex=0,Ez=1,Ey=1,Ez=1,Fy=0,Fz=1,Gx=1,Gz=0,Ix=0,Iz=1,Iy=0,Iz=1,Jx=0,Jy=1,Jz=0,Kx=1,Kz=1,Ky=0,Kz=1,
mathe能再发一遍cpp的代码吗,我记得好像是gmp的,我就不找了,怕f翻出来的版本不够新,^_^
mathe
发表于 2019-12-10 22:15:04
这是简化方程的代码。
我现在另外还有一个使用openf4的版本,不过那个需要修改openf4,改动比较大,而且只支持有限域
mathe
发表于 2019-12-11 08:02:18
22棵26行整数结果 https://www2.stetson.edu/~efriedma/trees/ 提供了一个结果,可以转化为
A[+1,1/3,0];
B(+0,+0)
C(+1,1/3)
D(3/2,1/2)
E(4/3,1/3)
F(4,2)
G(+1,+0)
H(4/3,2/9)
I(8/5,2/5)
J(2,+1)
K[+0,+1,0];
L(2,1/3)
M(2,1/2)
N(+1,+1)
O[+1,-1/3,0];
P(4,+0)
Q(5/2,1/2)
R(+0,+1)
S(4/3,2/3)
T(+0,2/3)
U[+1,+0,0];
V(4,2/3)
ABCDAGLQAKOUAFNTBFJSBKRTBGPUBHLVBEIMCGKNCHOTCELUCIQVDEGJDINSDLORDMQUEHKSFGHIFKPVILPTJKLMJNRUMPRSNOPQSTUV
wayne
发表于 2019-12-11 13:05:13
mathe 发表于 2019-12-11 08:02
22棵26行整数结果 https://www2.stetson.edu/~efriedma/trees/ 提供了一个结果,可以转化为.
以前的老代码复苏了. 我也顺手画出来一个,22棵26行整数结果.
ABCDAGLQAKOUAFNTBFJSBKRTBGPUBHLVBEIMCGKNCHOTCELUCIQVDEGJDINSDLORDMQUEHKSFGHIFKPVILPTJKLMJNRUMPRSNOPQSTUV
{{0,1,0},{1,0,0},{1,-(1/2),0},{1,-(3/4),0},{-(8/3),2,1},{2,-2,1},{0,0,1},{-(2/3),2/3,1},{-2,2,1},{8/3,-2,1},{4/3,-(2/3),1},{0,2/3,1},{-(4/3),2,1},{2,-1,1},{4/3,-(1/3),1},{1,0,1},{0,1,1},{16/9,-(2/3),1},{10/3,-2,1},{2,-(2/3),1},{4/3,0,1},{2/3,2/3,1}}
Clear["Global`*x"];Clear["Global`*y"];Clear["Global`*z"];
(*读入数据*)
ans=Flatten<>"b.txt","Data"]];
chars=Union]]];
(*载入预设坐标的值*)
ToExpression],","]];
(*计算出齐次坐标*)
sol=Solve],","]]==0];
tmp1={Symbol[#<>"x"],Symbol[#<>"y"],Symbol[#<>"z"]}&/@chars/.sol[]/.Map&,DeleteCases&/@chars],_Integer]];
candidates=Select,Abs]]>1/1000&&Min]].to[]]]]>1/1000&]; candidates // Length
to={{-1/2,0,1},{1/2,0,1},{0,1/2,1}};
g=Table[{i,tmp=Table]/ii[],{ii,tmp1.candidates[].to}];
lines=Partition],{ii,ToCharacterCode]]-64}],4];
Graphics[{Line,Blue,PointSize[.015],Point,Table],Red,20],tmp[]+.01],{ii,Length}]},Axes->True,AspectRatio->1]},{i,Length}];