wreck
发表于 2019-11-15 18:31:33
请问能给下openf4的下载链接吗
mathe
发表于 2019-11-16 13:43:46
到github搜索即可 https://github.com/nauotit/openf4
mathe
发表于 2019-11-30 07:42:17
好像找到一个24棵树33行的复数解
print(ABGIAFHLBCHJCDIKDEJLEFGKAMOSBNPTCOQUDPRVEMQWFNRXAKRTBLMUCGNVDHOWEIPXFJQSGRSUHMTVINUWJOVXKPSWLQTXGJMPHKNQILORACWXAEUVBDSXBFVWCESTDFTU);
solve([+1-3*X_Y+3*X_Y*X_Y,+2/7+1*Q_Y-12/7*X_Y,+1*J_X-2*X_Y,-8/7+1*Q_X+6/7*X_Y,-2/3+1*S_X,-1/2+1*R_Y-1/2*X_Y,-1+1*V_X+1*X_Y,+1*T_Y-3/2*X_Y,+1*D_X-1*X_Y,-3/2+1*N_X+3/2*X_Y,-1/2+1*P_X-1/2*X_Y,+1*U_Y-2*X_Y,+3+1*G_Y-3*X_Y,+1/2+1*K_Y-3/2*X_Y,-1+1*I_Y+3*X_Y,-1/2+1*T_X,-2/3+1*O_Y,+1+1*E_Y-3*X_Y,-2/3+1*O_X,+1*M_Y-2*X_Y,+1*P_Y-3/2*X_Y,-2/3+1*M_X,-1+1*W_X,-1+1*X_X,-1+1*U_X+1*X_Y,-1+1*E_X+1*X_Y,+1*D_Y-1*X_Y,+1*S_Y-1*X_Y,-1+1*W_Y,-1+1*V_Y,+1*N_Y-3/2*X_Y,+1*L_Y-2*X_Y,-1/2+1*R_X,-1/2+1*K_X],);
print("A=(0,1,0) B=(1,0,0) C_x=1 C_y=0 F_x=0 F_y=1 G=(1,G_y,0) H_x=0 H_y=0 I=(1,I_y,0) J_y=0 L_x=0 ");
https://emathgroup.github.io/blog/orchard-planting-problem#others
mathe
发表于 2020-1-5 14:34:59
mathe 发表于 2008-8-13 16:36
现在采用上面的思路,证明了13个点最多9条线
使用方法如下:
首先使用计算机穷举关于问题2在n=13时线的数 ...
13棵树如果仅把B投影到无穷远可以得到一个对称图案
但是不存在不包含无穷远点的对称图
mathe
发表于 2020-1-5 17:13:04
mathe 发表于 2008-8-18 09:59
上面的例子显然不行,有重复点(A和B坐标相同),使用另外一个例子可以得到结果:
-3/4+1*L_X
-1/4+1*M_X
...
这个14棵树的解无法对称,
给个去除无穷远点的图:
mathe
发表于 2020-1-5 19:14:09
14棵树10行的结果很多,但是整数解中对称的只找出一组
A(1/2, 7/6)B(0, 0), C(1,0) D(1, 1) E(5/8, 9/8) F(1/4, 5/4) G(3/8, 9/8) H(0, 1) I(3/4, 5/4) J(3/4, 3/4) K L(1/4, 3/4) M N(1/2, 3/2)
mathe
发表于 2020-1-5 19:40:40
上面的图消除无穷远点:
mathe
发表于 2020-1-5 19:47:50
还可以是
添加一个Geogebra图,修改参数h可以得到不同的对称图
mathe
发表于 2020-1-5 20:02:32
另外14棵10行实数解程序判断可能存在对称图的还有:
Parameter [-1+2*t^2+1*t^3=0]
A[+1 ,+2+3*t+1*t^2 , 0]
B[+1/2-1*t-1/2*t^2 ,+1/2+1*t+1/2*t^2 , +1]
C
D[+1 ,0 , 0]
E[+1 ,+2*t+1*t^2 , 0]
F
G[+1 ,+2+3*t+1*t^2 , +1]
H[+1*t^2 ,+1+1*t , +1]
I
J[+1 ,0 , +1]
K[-1*t ,+1+1*t , +1]
L
M[+1 ,+1+2*t+1*t^2 , +1]
N[-2*t-1*t^2 ,0 , +1]
ACDEAFGHBIJKBLMNCFILCGJMDFJNDHKLEGKNEHIM
Parameter [-1-1*t+1*t^2=0]{Real}
A[+1 ,-1 , 0]
B
C[+1+1*t ,+1 , +1]
D[-1*t ,+1-1*t , +1]
E
F[+1 ,0 , +1]
G[+1+1*t ,-1*t , +1]
H[+1 ,-2+1*t , 0]
I
J[-1*t ,0 , +1]
K[-1*t ,+1 , +1]
L[+1+1*t ,+1-1*t , +1]
M
N[+1 ,0 , 0]
AEFGAHMNBEIMBFJNCEKNCGLMDILNDJKMFHKLGHIJ
Parameter [-1+1*t+1*t^2=0]
A[+1 ,-1-1*t , 0]
B[+1 ,-1*t , 0]
C
D[+1 ,+1-1*t , +1]
E[+1-1*t ,+1 , +1]
F
G[+1 ,-1*t , +1]
H[+1 ,0 , +1]
I[-1*t ,+1 , +1]
J
K[+1-1*t ,0 , +1]
L
M[+1 ,0 , 0]
N[+1-1*t ,+1-1*t , +1]
ABLMAFGNBHINCFJLCHKMDGHLDJMNEFIMEKLNGIJK
Parameter [+1+2*t+2*t^2+1*t^3=0]
A[+1 ,+1*t+1*t^2 , 0]
B[+1 ,-1-2*t-1*t^2 , 0]
C
D[-2*t-1*t^2 ,-1-1*t , +1]
E[+1 ,0 , +1]
F[-1*t ,-1-2*t-1*t^2 , +1]
G
H[+1 ,-1-1*t , +1]
I
J[-1*t ,-1-1*t , +1]
K
L[+1 ,0 , 0]
M[-1*t ,0 , +1]
N[+1 ,-1-2*t-1*t^2 , +1]
ABKLAGHMBIJNCDMNCGIKDHJLEHKNEILMFGLNFJKM
mathe
发表于 2020-1-5 20:53:28
15棵12行整数解可能对称图形:
A
B[+1 ,-1 , +1]
C[+2 ,-1 , +1]
D[+1 ,0 , 0]
E[+2 ,-3 , +1]
F[+1 ,0 , +1]
G[+1 ,-1 , 0]
H[+1 ,-2 , 0]
I
J[+3 ,-3 , +1]
K
L
M[+1 ,-3 , +1]
N[+2 ,0 , +1]
O[+4/3 ,-1 , +1]
ADGHCFGIBEHIBGJKCHJLAIKLABFMDEJMACENDFKNBCDOEFLO
(ABC) (DEF) (GHI) (JKL) (MNO)
A
B[+1 ,0 , 0]
C[+1 ,+1 , 0]
D
E
F[+1 ,0 , +1]
G[+1 ,-1 , 0]
H[-1 ,-1 , +1]
I
J[-1 ,+1 , +1]
K[-1 ,0 , +1]
L[+1 ,-1 , +1]
M[+1/2 ,+1/2 , +1]
N[+2 ,+1 , +1]
O[+1 ,+2 , +1]
BCEGADEIABFKEHJKBHILAGJLDFGMACHMCFINBDJNCDKOEFLO
(ABE) (CDF) (GIK) (HJL) (MNO)
A
B[+1 ,0 , 0]
C
D[-1 ,+1 , +1]
E[+1 ,+1 , 0]
F[+1 ,0 , +1]
G
H[+1 ,-1 , 0]
I
J[+1 ,+2 , +1]
K[-1 ,0 , +1]
L[-1/2 ,+3/2 , +1]
M[+1 ,+1 , +1]
N[-2 ,+2 , +1]
O[-1 ,+5/3 , +1]
BCEHACGIBFGKAEJKAFHLDEILABDMCFJMDGHNBIJNCDKOLMNO
(AB) (C) (D)(EG) (FJ) (HI) (K) (LN) (M) (O): C,D,K,M,O必须在对称轴或无穷远直线上。 (比如CDKO为对称轴,O为无穷远点)
A
B[+1 ,0 , 0]
C[+1/2 ,+1 , +1]
D[+1 ,-1 , 0]
E
F[+1 ,-2 , 0]
G[+1 ,0 , +1]
H
I[+1/2 ,0 , +1]
J
K[-1/2 ,+2 , +1]
L[-1 ,+2 , +1]
M[-1 ,+1 , +1]
N[+1/2 ,-1/2 , +1]
O[-1 ,+5/2 , +1]
BDEFCFGHAEHJBGIJAFIKADGLBHKLABCMCEINDJMNCDKOELMO
(A) (B) (C) (DE) (F) (GH) (IK) (JL) (M) (NO)(ACM 和BF分别为对称轴和无穷远直线)
A[+1 ,0 , +1]
B[+1 ,0 , 0]
C
D
E[+1 ,-1 , 0]
F
G[+1 ,+1 , 0]
H
I[+1 ,-1 , +1]
J[-1 ,0 , +1]
K[+2 ,-1 , +1]
L[+2 ,+1 , +1]
M[+1 ,+2 , +1]
N[-1 ,+1 , +1]
O[+2 ,-3 , +1]
BEFGCDFHABHJACEKBDIKADGLAFIMCGJMEHINBCLNDEJOFKLO
(ABD)(CEF)(GHK)(IJL) (MNO)
A
B[+1 ,0 , 0]
C
D[-1 ,+1 , +1]
E[+1 ,-1 , 0]
F
G[+1 ,0 , +1]
H[+1 ,-1/2 , 0]
I[-1 ,+3/2 , +1]
J
K[+1 ,+1/2 , +1]
L[-1 ,0 , +1]
M[-1/2 ,+1 , +1]
N[+1/2 ,+1/2 , +1]
O[+1 ,-1 , +1]
BEFHCDGHACFJAHIKDFILBGJLABDMCEIMAEGNBCKNDEJOFGKO
(A) (BE) (C) (DG)(F) (H) (IK)(J) (LO) (MN)
A
B[-1 ,+2 , +1]
C[+1 ,0 , 0]
D[+1 ,-2 , 0]
E
F[+1 ,-1 , 0]
G
H[-1 ,+1 , +1]
I[+1 ,0 , +1]
J
K[-1 ,0 , +1]
L[-2 ,+2 , +1]
M[-1/2 ,+1 , +1]
N[-1/2 ,+3 , +1]
O[-1/2 ,-1 , +1]
CDEFBFGIAEGJBEHKACIKAFHLBCJLABDMCGHMDIJNDKLOEMNO
(AB) (C) (D) (E)(F) (GH) (IL) (JK) (M) (NO)
A
B[+1 ,0 , +1]
C[+1 ,-1 , +1]
D
E[+1 ,0 , 0]
F
G[+1 ,+1 , 0]
H[+1 ,-1 , 0]
I
J[+1 ,+1 , +1]
K[+1/2 ,-1/2 , +1]
L[+1/2 ,0 , +1]
M[+1/3 ,+1/3 , +1]
N[+2 ,-1 , +1]
O[+1/2 ,+1 , +1]
EFGHADFIBCFJACHKBGIKABELAGJMCDLMBDHNCEINDEJOFKLO
(AF) (B) (CE) (D) (GK) (H) (I) (JL) (MO)(N)