mathe
发表于 2020-1-6 11:43:41
16棵15行实数解(两个应该都具有很强的对称性)有
Parameter [+1+3*t+1*t^2=0](Real)
A[+1+1*t ,-1*t , +1]
B
C[+1 ,0 , 0]
D[-1*t ,+1+1*t , +1]
E
F[+1 ,+1 , +1]
G
H[+1 ,+2+1*t , 0]
I[+1 ,+1+1*t , 0]
J[+1 ,0 , +1]
K
L[-1*t ,0 , +1]
M[+1+1*t ,+1 , +1]
N[+1 ,+1+1*t , +1]
O[-1*t ,-1*t , +1]
P[+1+1*t ,+1+1*t , +1]
BCHIADGJBEGKDFIKAFHLCEJLCFGMDEHMAEINBFJNACKOBDLOABMPCDNPEFOP
(这个试验出了五边形嵌套图)
Parameter [-1+1*t+1*t^2=0](Real)
A[+1 ,0 , +1]
B
C
D[-1-1*t ,+1 , +1]
E[+1 ,-1 , 0]
F[-1*t ,+1 , +1]
G
H[-1*t ,+1*t , +1]
I[+1 ,0 , 0]
J[-1-1*t ,+1+1*t , +1]
K[+1 ,-1*t , 0]
L
M[-1-1*t ,0 , +1]
N[+1 ,-1*t , +1]
O[-1*t ,+1+1*t , +1]
P[+1 ,+1+1*t , +1]
DFGICEHJBEIKAFJKBCGLADHLACIMBDJMCDKNEFLNAEGOBFHOGHMPABNPIJOP
但是16棵14行整数解都无法对称,比如
A[+1 ,0 , 0](Integer)
B[+1 ,-2 , 0]
C[+1 ,0 , +1]
D
E
F
G[+1 ,-1 , +1]
H[+1 ,-1 , 0]
I
J[+1/2 ,0 , +1]
K[+1/2 ,+1 , +1]
L[-1 ,+2 , +1]
M[+1/2 ,-1 , +1]
N[+1 ,+1 , +1]
O[-2 ,+2 , +1]
P[+3 ,-1 , +1]
ABDHDEFIACFJBEGJBCIKCEHLDJKMBFLMCDGNAEKNFGHOAILOAGMPHINP
A[+1 ,0 , 0]
B
C[+1 ,0 , +1]
D[+1 ,-1/2 , 0]
E
F
G[+2 ,-1 , +1]
H[-1 ,+1 , +1]
I[+1 ,-1 , 0]
J
K[+1 ,+1/2 , +1]
L[+2 ,0 , +1]
M[+1 ,-1 , +1]
N[-1 ,+1/2 , +1]
O[+2 ,+1 , +1]
P[-1 ,-1 , +1]
ABDICFGIBEFJCDHJACELDFKLEHIMBCKMDEGNAJKNAFHOBGLOAGMPBHNP
mathe
发表于 2020-1-6 12:11:24
17棵15行整数解很多,但是基本上不对称,对称的有:
A[+1 ,0 , 0]
B
C[+1 ,0 , +1]
D[+1 ,+1 , 0]
E[+1 ,+1 , +1]
F
G[+1 ,-1 , 0]
H
I[+1/2 ,+1/2 , +1]
J[+1/2 ,+3/2 , +1]
K
L[+1 ,-1 , +1]
M[+3/2 ,+1/2 , +1]
N[-1 ,0 , +1]
O[-1 ,+1 , +1]
P[+1/2 ,-1 , +1]
Q[-1 ,+1/2 , +1]
ABDGCFGIDEHIBFHKBCELEGJMCDKMACHNDFJNAEFOGHLOBIJPAKLPAIMQBNOQ
(AB) (CF) (D) (E) (G) (H) (I) (JM) (KN) (LO) (PQ), DEHI是对称轴
A[+1 ,0 , 0]
B
C
D
E[+1 ,-1 , 0]
F[+1 ,+1 , +1]
G[+1 ,+1 , 0]
H
I[+1 ,0 , +1]
J[+1 ,-1 , +1]
K[-2 ,0 , +1]
L[-2 ,-1 , +1]
M[-2 ,+1 , +1]
N[-1/2 ,+1/2 , +1]
O[-1/2 ,-1/2 , +1]
P[+1/4 ,+3/4 , +1]
Q[+1/4 ,-3/4 , +1]
ABEGBCDHBFIJACIKAHJLADFMBKLMCEJNDGLNCFGOEHMODEIPFKNPGHIQJKOQ
(A) (B) (C) (DH) (EG) (FJ) (I)(K) (LM)(NO) (PQ), ACIK是对称轴
A[+1 ,0 , 0]
B
C
D[+1 ,-2 , 0]
E
F[+1 ,+2 , 0]
G[+1 ,0 , +1]
H[+1/2 ,-1 , +1]
I
J[+1/2 ,+1 , +1]
K[+1/4 ,0 , +1]
L[+1 ,-1 , +1]
M[+1 ,+1 , +1]
N[+1/4 ,+1/2 , +1]
O[+1/4 ,-1/2 , +1]
P[-1/2 ,+3 , +1]
Q[-1/2 ,-3 , +1]
ACDFBCEIABGKAHILAEJMCGLMBFJNDELNBDHOFIMOCKNODGJPEHKPFGHQIJKQ
(AB)(C)(DEFI) (GK) (HJ) (LMNO) (PQ)
A
B
C[+1 ,0 , +1]
D
E[+1 ,-1 , 0]
F[+1 ,0 , 0]
G[+1 ,+2 , +1]
H[+1 ,+1 , 0]
I[-1 ,+1 , +1]
J
K[-1 ,0 , +1]
L[+1 ,+1 , +1]
M[-1 ,-2 , +1]
N[+1/3 ,+2/3 , +1]
O[+3/2 ,+1/2 , +1]
P[-2 ,+2 , +1]
Q[-3 ,-1 , +1]
AEFHABDJCDFKBGHKACGLBFILAIKMBCENDGMNEJLOCHMODEIPFGJPHIJQKLNQ
(AB) (CK) (D) (EI) (F) (G) (HL) (J) (MN) (OQ) (P), FGJP是对称轴
...
mathe
发表于 2020-1-6 13:09:08
18棵17行整数解,对称的有:
A
B[+1 ,0 , 0]
C[+1 ,+1/2 , 0]
D[+1 ,0 , +1]
E[+1 ,+1 , 0]
F
G
H[+1 ,+2 , +1]
I
J[+2 ,+2 , +1]
K[-1 ,0 , +1]
L[+1/2 ,+1/2 , +1]
M[+1 ,+3/2 , +1]
N[+1/3 ,+2/3 , +1]
O[+2 ,+1/2 , +1]
P[+5 ,+2 , +1]
Q[+1/2 ,+1 , +1]
R[+2 ,+1 , +1]
BCEIAFGIBDGKAEHKEGJLDHIMACJMCFKNADLNBFLOBHJPCDOPEFMQGHNQIJORKLPRABQR
(A) (B) (CD) (EG) (FH) (IK) (JL) (MN) (OP) (Q) (R), ABQR是对称轴
A[-1 ,+1 , +1]
B
C[+1 ,0 , 0]
D
E[-2 ,+2 , +1]
F[+1 ,+2 , +1]
G[-1/2 ,+3/2 , +1]
H[+1 ,0 , +1]
I[+1 ,-1/2 , 0]
J
K[-1/2 ,+5/4 , +1]
L[-1/2 ,+1/2 , +1]
M[-2 ,+3/2 , +1]
N[+1 ,+1 , 0]
O
P[-2 ,0 , +1]
Q[+1 ,+1 , +1]
R[-1 ,+2 , +1]
DEIKAFJKBGKLAHIMCGJMBCINDFLNBDJOAELOBEMPAGNPCHOPACDQBFHQCEFRDGHRIJQR
(A) (B) (CD) (EG) (FH) (IJ) (KM) (LP) (NO) (Q) (R) ?
mathe
发表于 2020-1-6 13:17:35
19棵20行整数解:
A[+1 ,-1 , 0]
B[+1 ,+1/2 , +1]
C[+1 ,0 , 0]
D[+1 ,-1/4 , 0]
E
F
G
H[-1 ,+1 , +1]
I[+1 ,0 , +1]
J[+2 ,0 , +1]
K
L[-1 ,+3/2 , +1]
M[+1 ,+1 , +1]
N[-1 ,+1/2 , +1]
O[-2/3 ,+2/3 , +1]
P[+1/3 ,+1/6 , +1]
Q[+1/3 ,+2/3 , +1]
R[+4/3 ,+2/3 , +1]
S[+1/3 ,+7/6 , +1]
ACDFEFGKCIJKBEJLCEHMBFIMBCGNFHLNDGJOAHKOAGLPDINPBDHQAEIQAJMRBKPRCOQRDLMSENOSFPQS
(AD) (BE) (CF) (G) (HI) (JL) (KN) (M)(OP) (Q) (RS)
mathe
发表于 2020-1-6 17:01:48
比如上面19棵20行,我们可以选择将AD, BE投影成正方形,结果得到
可以发现点Q被投影成无穷远点。
但是注意到三个独立点Q,M,G在一条直线上,我们可以选择另外一条平行x轴的直线投影为无穷远可以继续保持对称性,
所以选择变换阵
$S=\begin{pmatrix} 1&0&0\\0&1&0\\0&1&-t\end{pmatrix}$
分别选择不同的参数t,可以得出如下的图:
wayne
发表于 2020-1-6 18:27:47
ACDFEFGKCIJKBEJLCEHMBFIMBCGNFHLNDGJOAHKOAGLPDINPBDHQAEIQAJMRBKPRCOQRDLMSENOSFPQS 的 射影坐标是:
{{A,{1,-2,0}},{B,{1/2,1/2,1}},{C,{1,0,0}},{D,{1,-(1/2),0}},{E,{0,1,1}},{F,{0,1,0}},{G,{0,1/2,1}},{H,{-(1/2),1,1}},{I,{1/2,0,1}},{J,{1,0,1}},{K,{0,0,1}},{L,{-(1/2),3/2,1}},{M,{1/2,1,1}},{N,{-(1/2),1/2,1}},{O,{-(1/3),2/3,1}},{P,{1/6,1/6,1}},{Q,{1/6,2/3,1}},{R,{2/3,2/3,1}},{S,{1/6,7/6,1}}}
数学星空
发表于 2020-1-6 18:54:19
19棵20行:
初始数据
[, , , , , , , , , , , , , , , , , , , ]
[, , , , , , , , , , , , , , , , , , ]
第一种:变换基点
M-->
D-->[-1/2, -sqrt(3)/6, 1]
A-->
Q-->
变换矩阵
[[-1/12, 1/6, -1/12], [-1/12*sqrt(3), -1/6*sqrt(3), 5/36*sqrt(3)], ]
变换后坐标
, , [-1/6, -sqrt(3)/6, C], [-1/2, -sqrt(3)/6, D], [-1/10, sqrt(3)/30, E], , , [-1/8, -sqrt(3)/24, H], , , , [-3/10, sqrt(3)/30, L], , [-1/22, -(5*sqrt(3))/66, N], [-1/18, -sqrt(3)/18, O], , , , [-1/6, sqrt(3)/6, S]
画图得到
第二种:
变换基点:
O[-2/3, 2/3, 1]-->[-1, 1, 1]
K--> [-1, -1, 1]
N[-1, 1/2, 1]-->
P-->
变换矩阵
[[-1, 2, -1], , [-3, -6, 1]]
变换后坐标
[-1, 0, A], , , , [-1/5, 1/5, E], [-1/3, 0, F], , [-1, 1/2, H], , , [-1, -1, K], [-3/5, 1/5, L], , , [-1, 1, O], , , , [-1/7, 1/7, S]
画图得到:
第三种
变换基点:
-->[-1/4, sqrt(3)/6, 1]
--> [-1/2, 0, 1]
[-1, 1, 1]-->
-->
变换矩阵
[[-1/6, 1/3, -1/6], [-1/3*sqrt(3), -2/3*sqrt(3), 1/3*sqrt(3)], [-2, -4, 8/3]]
变换后坐标
[-1/4, sqrt(3)/6, A], , , , [-1/8, sqrt(3)/4, E], [-1/12, sqrt(3)/6, F], , , [-1/2, 0, I], , [-1/16, sqrt(3)/8, K], [-3/8, sqrt(3)/4, L], , , , [-1/8, sqrt(3)/12, P], , , [-1/16, (5*sqrt(3))/24, S]
画图得到:
mathe
发表于 2020-1-6 20:34:17
mathe 发表于 2020-1-6 11:43
16棵15行实数解(两个应该都具有很强的对称性)有
Parameter [+1+3*t+1*t^2=0](Real)
A[ ...
16棵15行第一个实数解为正五角星嵌套,而第二个对称解可以转化为
DFGICEHJBEIKAFJKBCGLADHLACIMBDJMCDKNEFLNAEGOBFHOGHMPABNPIJOP
数学星空
发表于 2020-1-6 22:42:34
16棵15行
初始数据:
[, , , , , , , , , , , , , , ]
[, , , , , , , , , , , , , , , ]
变换基点:
E-->
B-->[-1/2, -sqrt(3)/6, 1]
C-->
P-->
变换矩阵
[[-1/(6 + 6*t), 1/(6 + 6*t), 0], , [-1/(3 + 3*t), -1/(3 + 3*t), -1/3]]
t^2 + 3*t + 1 = 0 取t=sqrt(5)/2 - 3/2
变换后坐标
[[(-2 + sqrt(5))/(sqrt(5) + 1), sqrt(3)*(-2 + sqrt(5))/(3 + 3*sqrt(5)), A], [-1/2, -sqrt(3)/6, B], , [(2 - sqrt(5))/(sqrt(5) + 1), sqrt(3)*(-2 + sqrt(5))/(3 + 3*sqrt(5)), D], , , [-1/(sqrt(5) + 1), sqrt(3)*(-2 + sqrt(5))/(3 + 3*sqrt(5)), G], [(1/2 - sqrt(5)/2)/(3 + sqrt(5)), -sqrt(3)/6, H], [-(sqrt(5)/2 - 3/2)/(sqrt(5) + 1), -sqrt(3)/6, I], , , [-sqrt(5)/4 + 3/4, sqrt(3)*((3*sqrt(5))/2 - 5/2)/6, L], [((sqrt(5)/2 - 3/2)*sqrt(5))/10, sqrt(3)*(sqrt(5)/2 - 3/2)*sqrt(5)/30, M], [-((sqrt(5)/2 - 3/2)*sqrt(5))/10, sqrt(3)*(sqrt(5)/2 - 3/2)*sqrt(5)/30, N], , ]
画图得到
数学星空
发表于 2020-1-6 22:48:55
16棵15行
初始数据:
[, , , , , , , , , , , , , , ]
[, , , , , , , , , , , , , , , ]
变换基点:
A-->
D[-1 - t, 1, 1]-->[-1/2, -sqrt(3)/6, 1]
F[-t, 1, 1]-->
B-->
变换矩阵
[[-1/(6 + 6*t), -1/12*1/t, 1/12*(1 - t)/t], , [-1/(3 + 3*t), 1/6*1/t, 1/6*(-1 - 5*t)/t]]
变换后坐标
, [-1/2, -sqrt(3)/6, B], [(t - 1)/(2 + 10*t), sqrt(3)*(t - 1)/(6 + 30*t), C], [-1/6, sqrt(3)/6, D], [(t - 1)/(6*t + 2), -sqrt(3)/6, E], [(1 - t)/(10 + 6*t), sqrt(3)*(3*t + 1)/(30 + 18*t), F], , [(t - 1)/(6 + 6*t), -sqrt(3)*(t - 1)/(6 + 6*t), H], , , [(1 - t)/(6 + 2*t), -sqrt(3)/6, K], , [(-1 - t)/(6*t + 2), (3*t - 1)*sqrt(3)/(18*t + 6), M], [(t - 1)/(14 + 6*t), (-3*t - 1)*sqrt(3)/(42 + 18*t), N], , [(2 + t)/(6 + 4*t), sqrt(3)*t/(18 + 12*t), P]
-1+t+t^2=0,取t=sqrt(5)/2 - 1/2
[[(sqrt(5)/2 - 1/2)/(9 + 3*sqrt(5)), -sqrt(3)*(sqrt(5)/2 - 1/2)/(9 + 3*sqrt(5)), A], [-1/2, -sqrt(3)/6, B], [(sqrt(5)/2 - 3/2)/(-3 + 5*sqrt(5)), sqrt(3)*(sqrt(5)/2 - 3/2)/(-9 + 15*sqrt(5)), C], [-1/6, sqrt(3)/6, D], [(sqrt(5)/2 - 3/2)/(3*sqrt(5) - 1), -sqrt(3)/6, E], [(3/2 - sqrt(5)/2)/(7 + 3*sqrt(5)), sqrt(3)*((3*sqrt(5))/2 - 1/2)/(21 + 9*sqrt(5)), F], , [(sqrt(5)/2 - 3/2)/(3 + 3*sqrt(5)), -sqrt(3)*(sqrt(5)/2 - 3/2)/(3 + 3*sqrt(5)), H], , , [(3/2 - sqrt(5)/2)/(5 + sqrt(5)), -sqrt(3)/6, K], , [(-1/2 - sqrt(5)/2)/(3*sqrt(5) - 1), ((3*sqrt(5))/2 - 5/2)*sqrt(3)/(9*sqrt(5) - 3), M], [(sqrt(5)/2 - 3/2)/(11 + 3*sqrt(5)), (-(3*sqrt(5))/2 + 1/2)*sqrt(3)/(33 + 9*sqrt(5)), N], , [(3/2 + sqrt(5)/2)/(4 + 2*sqrt(5)), sqrt(3)*(sqrt(5)/2 - 1/2)/(12 + 6*sqrt(5)), P]]
画图得到