找回密码
 欢迎注册
查看: 37426|回复: 8

[求助] 求证一个不等式

[复制链接]
发表于 2009-5-5 08:19:54 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
证明: $(n r-r-2)(1+r)^n+n r+r+2\ge 0$ 这里 n 是正整数,r 是正实数。 谢谢!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-5-5 08:30:44 | 显示全部楼层
这个不等式来源于我在博客园中的一篇随笔“个人住房贷款计算器的数学原理”。 在该文中提到,个人住房贷款等本息法和等本金法应付的总利息差是: $A(\frac{1+(nr-1)(1+r)^n}{(1+r)^n-1}-\frac{r(n+1)}{2})$ 上面的算式中,贷款金额 A 和月利率 r 都是正实数,期数 n 是正整数。 而这个利息差应该是不小于零的。 经过化简,就得到了1楼的不等式。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-5-5 10:58:32 | 显示全部楼层
证明不难 记 $f_n(r)=(nr-r-2)(1+r)^n+(n+1)r+2=(n-1)(1+r)^{n+1}-(n+1)(1+r)^n+(n+1)(r+1)-(n-1)$ 那么$f_n(0)=0$ 而 $f_n'(r)=(n^2-1)(1+r)^n-(n+1)n(1+r)^{n-1}+(n+1)=(n+1)((n-1)(1+r)^n-n(1+r)^{n-1}+1)$ 由平均不等式可以得到在$n>=1,r>=-1$时有$(n-1)(1+r)^n-n(1+r)^{n-1}+1>=0$ 所以我们得到$f_n'(r)>=0$,也就是在$n>=1,r>=-1$时$f_n(r)$单调增,由$f_n(0)=0$得到$r>=0$时$f_n(r)>=0$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-5-5 11:07:44 | 显示全部楼层
现在考虑一下直接用初等方法来证明这个题目,我们知道 $x^{n+1}-1=(x-1)(1+x+x^2+...+x^n)$ 所以 $f_n(r)=(n-1)(1+r)^{n+1}-(n+1)(1+r)^n+(n+1)(r+1)-(n-1)$ 即 $f_n(r)=(n-1)*(1+r-1)(1+(1+r)+(1+r)^2+...+(1+r)^n)-(n+1)(1+r)(1+r-1)(1+(1+r)+...+(1+r)^{n-2})$ 即 $f_n(r)=(n-1)r(1+(1+r)^n)-2r((1+r)+(1+r)^2+...+(1+r)^(n-1))$ 由于 $(1+r)^n+1-(1+r)^{n-k}-(1+r)^k=((1+r)^{n-k}-1)((1+r)^k-1)>=0$ 我们分别另k=1,2,...,n-1带入上面不等式,然后累加就可以得到$f_n(r)>=0$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-5-5 11:11:29 | 显示全部楼层
非常感谢 mathe 提供的证明。 我仔细研究一下该证明。 学习了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-5-5 11:26:02 | 显示全部楼层
恩…… 设不等式左面为f, 那么f的导数g1是(((n-1)r-1)(r+1)^(n-1)+1)(n+1); f的二阶导数g2是nr(n^2-1)(r+1)^(n-2); 可以看到g2总是大于等于0,所以g1是增函数; g1(0)=0,故g1总是大于等于0,所以f是增函数; f(0)=0,所以f总是大于等于0。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-5-5 11:38:18 | 显示全部楼层
如果令 $t=r+1>1$, 则原不等式 $<=> (n(t-1))/(t+1) >= (t^n-1)/(t^n+1) \quad<=>\quad 1/(t+1) - 1/(t^n+1) <= (n-1)/2$, 不知上述变换是否有助于简化证明?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-5-7 07:59:04 | 显示全部楼层

回复 6# zgg___ 的帖子

谢谢! 已经按照你提供的证明方法,更新了我在博客园中的随笔“个人住房贷款计算器的数学原理”。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-5-7 08:00:53 | 显示全部楼层

回复 7# gxqcn 的帖子

十分感谢你的回复。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-25 14:02 , Processed in 0.024593 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表