- 注册时间
- 2014-1-19
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 4905
- 在线时间
- 小时
|
发表于 2019-6-24 12:54:02
|
显示全部楼层
本帖最后由 葡萄糖 于 2019-6-24 22:38 编辑
过平面不共线三点\(\,M_i(x_i,y_i,z_i)\,\),\(\,i=1,2,3\,\)的圆曲线\(\,\odot\,\!P\,\)方程为:\[\begin{vmatrix}
x^2+y^2&x&y&1\\
{x_1}^2+{y_1}^2&x_1&y_1&1\\
{x_2}^2+{y_2}^2&x_2&y_2&1\\
{x_3}^2+{y_3}^2&x_3&y_3&1\\
\end{vmatrix}=0\]
而圆心\(\,\odot\,\!P\,\)为(注意这里系数为\(\,\dfrac{1}{2}\,\)):
\begin{align*}
x_{\overset{\,}P}&=\dfrac{1}{{\color{red}2}D{_{\overset{\,}(x,y)}}}
\begin{vmatrix}
{{_{\overset{\,}(x,y)}}s_{\overset{\,}(1)}}
&y_1&1\\
{{_{\overset{\,}(x,y)}}s_{\overset{\,}(2)}}
&y_2&1\\
{{_{\overset{\,}(x,y)}}s_{\overset{\,}(3)}}
&y_3&1\\
\end{vmatrix}\\
\\
y_{\overset{\,}P}&=\dfrac{1}{{\color{red}2}D{_{\overset{\,}(x,y)}}}
\begin{vmatrix}
x_1&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(1)}}
&1\\
x_2&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(2)}}
&1\\
x_3&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(3)}}
&1\\
\end{vmatrix}\\
\\
\end{align*}
\begin{align*}
R_{\overset{\,}{\odot\,\!P}}
&=\dfrac{1}{{\color{red}2}D{_{\overset{\,}(x,y)}}}
\sqrt{\begin{vmatrix}
{{_{\overset{\,}(x,y)}}s_{\overset{\,}(1)}}
&y_1&1\\
{{_{\overset{\,}(x,y)}}s_{\overset{\,}(2)}}
&y_2&1\\
{{_{\overset{\,}(x,y)}}s_{\overset{\,}(3)}}
&y_3&1\\
\end{vmatrix}^2+\begin{vmatrix}
x_1&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(1)}}
&1\\
x_2&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(2)}}
&1\\
x_3&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(3)}}
&1\\
\end{vmatrix}^2+4D{_{\overset{\,}(x,y)}}
\begin{vmatrix}
x_1&y_1&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(1)}}\\
x_2&y_2&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(2)}}\\
x_3&z_3&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(3)}}\\
\end{vmatrix}\,
}\\
&=
\sqrt{
{x_{\overset{\,}P}}^2+{y_{\overset{\,}P}}^2+
\dfrac{P{_{\overset{\,}(x,y)}}}{D{_{\overset{\,}(x,y)}}}
}\\
\end{align*}
其中\(\,{_{\overset{\,}(x,y)}}s_{\overset{\,}(i)}={x_i}^2+{y_i}^2\,\),\( D{_{\overset{\,}(x,y)}}=\begin{vmatrix}
x_1&y_1&1\\
x_2&y_2&1\\
x_3&y_3&1\\
\end{vmatrix} \),\(P{_{\overset{\,}(x,y)}}=\begin{vmatrix}
x_1&y_1&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(1)}}\\
x_2&y_2&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(2)}}\\
x_3&z_3&{{_{\overset{\,}(x,y)}}s_{\overset{\,}(3)}}\\
\end{vmatrix}\)
(注意:曲线方程以及曲面方程表达式中D含义不同,半径公式中D的符号不相同,注意区分)
********** ********** ********** ********** ********** **********
过空间不共面四点\(\,M_i(x_i,y_i,z_i)\,\),\(\,i=1,2,3,4\,\)的球面方程为:\[\begin{vmatrix}
x^2+y^2+z^2&x&y&z&1\\
{x_1}^2+{y_1}^2+{z_1}^2&x_1&y_1&z_1&1\\
{x_2}^2+{y_2}^2+{z_2}^2&x_2&y_2&z_2&1\\
{x_3}^2+{y_3}^2+{z_3}^2&x_3&y_3&z_3&1\\
{x_4}^2+{y_4}^2+{z_4}^2&x_4&y_4&z_4&1\\
\end{vmatrix}=0\]
而球心\(\,\odot\,\!Q\,\)为(注意这里系数为\(\,\dfrac{1}{2}\,\)):
\begin{align*}
x_{\overset{\,}Q}&=\dfrac{1}{{\color{red}2}D{_{\overset{\,}(x,y,z)}}}
\begin{vmatrix}
{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(1)}}
&y_1&z_1&1\\
{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(2)}}
&y_2&z_2&1\\
{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(3)}}
&y_3&z_3&1\\
{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(4)}}
&y_4&z_4&1\\
\end{vmatrix}\\
\\
y_{\overset{\,}Q}&=\dfrac{1}{{\color{red}2}D{_{\overset{\,}(x,y,z)}}}
\begin{vmatrix}
x_1&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(1)}}
&z_1&1\\
x_2&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(2)}}
&z_2&1\\
x_3&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(3)}}
&z_3&1\\
x_4&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(4)}}
&z_4&1\\
\end{vmatrix}\\
\\
z_{\overset{\,}Q}&=\dfrac{1}{{\color{red}2}D{_{\overset{\,}(x,y,z)}}}
\begin{vmatrix}
x_1&y_1&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(1)}}&1\\
x_2&y_2&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(2)}}&1\\
x_3&y_3&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(3)}}&1\\
x_4&y_4&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(4)}}&1\\
\end{vmatrix}\\
\end{align*}
\begin{align*}
R_{\overset{\,}{\odot\,\!Q}}
&=\dfrac{1}{{\color{red}2}D{_{\overset{\,}(x,y,z)}}}
\sqrt{\begin{vmatrix}
{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(1)}}
&y_1&z_1&1\\
{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(2)}}
&y_2&z_2&1\\
{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(3)}}
&y_3&z_3&1\\
{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(4)}}
&y_4&z_4&1\\
\end{vmatrix}^2+\begin{vmatrix}
x_1&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(1)}}
&z_1&1\\
x_2&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(2)}}
&z_2&1\\
x_3&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(3)}}
&z_3&1\\
x_4&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(4)}}
&z_4&1\\
\end{vmatrix}^2+
\begin{vmatrix}
x_1&y_1&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(1)}}
&1\\
x_2&y_2&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(2)}}
&1\\
x_3&y_3&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(3)}}
&1\\
x_4&y_4&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(4)}}
&1\\
\end{vmatrix}^2
-4D{_{\overset{\,}(x,y)}}
Q{_{\overset{\,}(x,y,z)}}\,
}\\
&=
\sqrt{
{x_{\overset{\,}Q}}^2+{y_{\overset{\,}Q}}^2+{z_{\overset{\,}Q}}^2{\color{red}-}
\dfrac{Q{_{\overset{\,}(x,y,z)}}}{D{_{\overset{\,}(x,y,z)}}}
}\\
\end{align*}
其中\(\,{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(i)}={x_i}^2+{y_i}^2+{z_i}^2\,\),\( D{_{\overset{\,}(x,y,z)}}=\begin{vmatrix}
x_1&y_1&z_1&1\\
x_2&y_2&z_2&1\\
x_3&y_3&z_3&1\\
x_4&y_4&z_4&1\\
\end{vmatrix} \),\(Q{_{\overset{\,}(x,y,z)}}=\begin{vmatrix}
x_1&y_1&z_1&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(1)}}
\\
x_2&y_2&z_2&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(2)}}
\\
x_3&y_3&z_3&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(3)}}
\\
x_4&y_4&z_4&{{_{\overset{\,}(x,y,z)}}s_{\overset{\,}(4)}}
\\
\end{vmatrix}\)
(注意:曲线方程以及曲面方程表达式中D含义不同,半径公式中D的符号不相同,注意区分)
球面方程的问题 参考《空间解析几何解题指导》萧永震P285 T5.5
还参考 潍坊学院本科毕业论文 行列式在解析几何中的应用问题
https://wenku.baidu.com/view/ac1 ... 00bed5b8f3731d.html |
|