- 注册时间
- 2007-12-27
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 43421
- 在线时间
- 小时
|
发表于 2020-7-20 13:36:23
|
显示全部楼层
题目中还有条件(a,b)=1中文题目中没有列出,最好内容完整一些,不然比较容易让人迷惑。
首先显然对于ax+bx=n>=ab的情况存在非负解比较显然,这里没有给出说明。
所以现在只需要证明对于一切满足$(a-1)(b-1)=ab-a-b+1\le n \lt ab$的n都有非复解就可以了
于是上面提到的四边形内部正好包含了所有这样的非负解,而且显然对于每个不同的n,都最多只有一个解,这一步可以简单的反证。
于是我们只需要证明这个四边形内部包含的整数点数目为a+b-1就可以解决这个问题了。
至于平面上多边形的面积,你可以看成两个三角形,求它们的面积和,三角形给定三个顶点的坐标就可以用行列是表示出三角形面积
也可以有推广的多边形面积公式,对于按逆时针顺序的$(x_1,y_1),(x_2,y_2),....,(x_n,y_n)$围成多边形的面积为$\frac 1 2 \sum (x_iy_{i+1}-x_{i+1}y_i)$
于是对于本题,$(b,0), (0,a), (-1,a-1), (b-1,-1)$四点围成的面积就是$\frac 1 2 (ba-0+0+a+1-(a-1)(b-1)+0+b)=a+b$ |
|