- 注册时间
- 2009-3-10
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 2345
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
本帖最后由 dlsh 于 2021-1-30 22:26 编辑
一个椭圆,连接它的四个顶点,组成了一个菱形,菱形内有一内切圆。求证:与该内切圆相切的任一直线,与椭圆相交两个点,分别连接圆心与两点,则这两条线互相垂直,原帖参考http://mathchina.com/bbs/forum.p ... p;extra=&page=1。
软件可靠吗
\(假设Z_1和Z_2是过P点与椭圆的交点,欲证明OZ_1垂直OZ_2,只要证明\)
\(\frac{z_1}{\bar{z_1}}=-\frac{z_2}{\bar{z_2}}即可,即\frac{z_1}{\bar{z_1}}+\frac{z_2}{\bar{z_2}}=0,因为Z_1、Z_2在过P点的切线,\)有\(z_1+p^2\bar{z_1}=2p,z_2+p^2\bar{z_2}=2p,所以\frac{z_1}{\bar{z_1}}+\frac{z_2}{\bar{z_2}}+2p^2=2p\frac{\bar{z_1}+\bar{ z_2}}{\bar{z_1} \bar{ z_2}}\),\(显然\bar{z_1}和\bar{ z_2}是方程的两个根,根据韦达定理和上图的计算结果得\frac{\bar{z_1}+\bar{ z_2}}{\bar{z_1} \bar{ z_2}}=p,结论得证\)
很困惑为什么同样的方程得出不同的结论?解方程不能证明?Mathematica软件会出错吗? |
|