- 注册时间
- 2012-4-20
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3061
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
本帖最后由 creasson 于 2021-3-11 15:10 编辑
终于得到了任意二次曲面的有理参数表示。
例如单位球 $x^2 + y^2 + z^2 = 1 $
\[x = - \frac{{3{v^2} - 2v\alpha - {\alpha ^2} + {u^2}{\alpha ^2} - 4{v^2}\beta + {v^2}{\beta ^2} - 4{v^2}\alpha \gamma + 2uv{\alpha ^2}\gamma + 2{v^2}\alpha \beta \gamma + 2{v^2}{\alpha ^2}{\gamma ^2}}}{{5{v^2} + 2v\alpha + {\alpha ^2} + {u^2}{\alpha ^2} - 4{v^2}\beta + {v^2}{\beta ^2} - 4{v^2}\alpha \gamma + 2uv{\alpha ^2}\gamma + 2{v^2}\alpha \beta \gamma + 2{v^2}{\alpha ^2}{\gamma ^2}}}\]
\[y = \frac{{2\alpha (v + \alpha )(u + v\gamma )}}{{5{v^2} + 2v\alpha + {\alpha ^2} + {u^2}{\alpha ^2} - 4{v^2}\beta + {v^2}{\beta ^2} - 4{v^2}\alpha \gamma + 2uv{\alpha ^2}\gamma + 2{v^2}\alpha \beta \gamma + 2{v^2}{\alpha ^2}{\gamma ^2}}}\]
\[z = - \frac{{2v(v + \alpha )( - 2 + \beta + \alpha \gamma )}}{{5{v^2} + 2v\alpha + {\alpha ^2} + {u^2}{\alpha ^2} - 4{v^2}\beta + {v^2}{\beta ^2} - 4{v^2}\alpha \gamma + 2uv{\alpha ^2}\gamma + 2{v^2}\alpha \beta \gamma + 2{v^2}{\alpha ^2}{\gamma ^2}}}\]
椭圆抛物面 $z = x^2 + y^2 $
\[x = - \frac{{ - {v^2} - 10v\alpha + 8uv\alpha - 5{\alpha ^2} + 5{u^2}{\alpha ^2} - 4{v^2}\beta - 4uv\alpha \beta + {v^2}{\beta ^2} + 4{v^2}\alpha \gamma + 6uv{\alpha ^2}\gamma - 2{v^2}\alpha \beta \gamma + 2{v^2}{\alpha ^2}{\gamma ^2}}}{{5{v^2} + 6v\alpha + 8uv\alpha + 5{\alpha ^2} + 5{u^2}{\alpha ^2} - 2{v^2}\beta + 2v\alpha \beta - 4uv\alpha \beta + {v^2}{\beta ^2} + 6{v^2}\alpha \gamma + 2v{\alpha ^2}\gamma + 6uv{\alpha ^2}\gamma - 2{v^2}\alpha \beta \gamma + 2{v^2}{\alpha ^2}{\gamma ^2}}}\]
\[y = \frac{{2(v + \alpha )(4v + 5u\alpha - 2v\beta + 3v\alpha \gamma )}}{{5{v^2} + 6v\alpha + 8uv\alpha + 5{\alpha ^2} + 5{u^2}{\alpha ^2} - 2{v^2}\beta + 2v\alpha \beta - 4uv\alpha \beta + {v^2}{\beta ^2} + 6{v^2}\alpha \gamma + 2v{\alpha ^2}\gamma + 6uv{\alpha ^2}\gamma - 2{v^2}\alpha \beta \gamma + 2{v^2}{\alpha ^2}{\gamma ^2}}}\]
\[z = \frac{{13{v^2} + 14v\alpha + 8uv\alpha + 5{\alpha ^2} + 5{u^2}{\alpha ^2} - 6{v^2}\beta - 2v\alpha \beta - 4uv\alpha \beta + {v^2}{\beta ^2} + 2{v^2}\alpha \gamma - 2v{\alpha ^2}\gamma + 6uv{\alpha ^2}\gamma - 2{v^2}\alpha \beta \gamma + 2{v^2}{\alpha ^2}{\gamma ^2}}}{{5{v^2} + 6v\alpha + 8uv\alpha + 5{\alpha ^2} + 5{u^2}{\alpha ^2} - 2{v^2}\beta + 2v\alpha \beta - 4uv\alpha \beta + {v^2}{\beta ^2} + 6{v^2}\alpha \gamma + 2v{\alpha ^2}\gamma + 6uv{\alpha ^2}\gamma - 2{v^2}\alpha \beta \gamma + 2{v^2}{\alpha ^2}{\gamma ^2}}}\]
单叶双曲面 $x^2 + y^2 - z^2 = 1 $
\[x = - \frac{{ - 8{v^2} - 8v\alpha - 4{\alpha ^2} + 4{u^2}{\alpha ^2} + 4{v^2}\beta - {v^2}{\beta ^2} + 4{v^2}\alpha \gamma + 8uv{\alpha ^2}\gamma - 2{v^2}\alpha \beta \gamma + 3{v^2}{\alpha ^2}{\gamma ^2}}}{{8v\alpha + 4{\alpha ^2} + 4{u^2}{\alpha ^2} + 4{v^2}\beta - {v^2}{\beta ^2} + 4{v^2}\alpha \gamma + 8uv{\alpha ^2}\gamma - 2{v^2}\alpha \beta \gamma + 3{v^2}{\alpha ^2}{\gamma ^2}}}\]
\[y = \frac{{8\alpha (v + \alpha )(u + v\gamma )}}{{8v\alpha + 4{\alpha ^2} + 4{u^2}{\alpha ^2} + 4{v^2}\beta - {v^2}{\beta ^2} + 4{v^2}\alpha \gamma + 8uv{\alpha ^2}\gamma - 2{v^2}\alpha \beta \gamma + 3{v^2}{\alpha ^2}{\gamma ^2}}}\]
\[z = - \frac{{4v(v + \alpha )( - 2 + \beta + \alpha \gamma )}}{{8v\alpha + 4{\alpha ^2} + 4{u^2}{\alpha ^2} + 4{v^2}\beta - {v^2}{\beta ^2} + 4{v^2}\alpha \gamma + 8uv{\alpha ^2}\gamma - 2{v^2}\alpha \beta \gamma + 3{v^2}{\alpha ^2}{\gamma ^2}}}\]
给定单叶双曲面上的三个点: $ A\left( 1,0,0 \right),B\left( 0,1,0 \right),C\left( \frac{5}{3},0,\frac{4}{3} \right) $
可以给出这个三角形曲面片的表示:
\[x = - \frac{{ - 16 + 16{u^2} - 16v + 32uv + 11{v^2}}}{{16 + 16{u^2} + 16v + 32uv + 19{v^2}}}\]
\[y = \frac{{16(2 + v)(u + v)}}{{16 + 16{u^2} + 16v + 32uv + 19{v^2}}}\]
\[z = - \frac{{4v(2 + v)}}{{16 + 16{u^2} + 16v + 32uv + 19{v^2}}}\]
参数 $0 \le u \le 1$, $ \frac{1}{2}(3 - 4u) - \frac{\sqrt {27 - 40u + 16u^2} }{2\sqrt 3 } \le v \le 0 $
控制点取的$(-1,0,0)$, 即曲面与 $DAB$, $DAC$, $DBC$ 的平面所截部分。
Show[ListPlot3D[{{1,0,0},{0,1,0},{5/3,0,4/3},{-1,0,0}},Mesh->All,PlotStyle->{Red}],ParametricPlot3D[{-((-16+16 u^2-16 v+32 u v+11 v^2)/(16+16 u^2+16 v+32 u v+19 v^2)),(16 (2+v) (u+v))/(16+16 u^2+16 v+32 u v+19 v^2),-((4 v (2+v))/(16+16 u^2+16 v+32 u v+19 v^2))},{u,0,1},{v,1/2 (3-4 u)-Sqrt[27-40 u+16 u^2]/(2 Sqrt[3]),0},PlotStyle->{Green}],AspectRatio->1]
|
-
|