找回密码
 欢迎注册
楼主: TSC999

[讨论] 关于网上【最贱的数学题】帖子的提问

[复制链接]
发表于 2023-3-28 16:01:12 | 显示全部楼层
nyy 发表于 2021-12-31 14:20
x = (-28 (a + b + 2 c))/(6 a + 6 b - c), \quad  y = (364 (a - b))/(
6 a + 6 b - c)  这个二元变换 ...

https://www.math.tamu.edu/~rojas/cubic2weierstrass.pdf

Transforming a general cubic elliptic curve equation to Weierstrass form

95% 的人解不出这道题《史上最贱的数学题》能否用数学软件计算出来? - Nemesis XX的回答 - 知乎
https://www.zhihu.com/question/267427508/answer/323883323

如何得到那个变换,答案也许在这里面!

点评

nyy
希望有一天我能搞明白变换关系怎么来的!  发表于 2023-4-3 08:16
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-4-3 08:08:47 | 显示全部楼层
nyy 发表于 2023-3-28 16:01
https://www.math.tamu.edu/~rojas/cubic2weierstrass.pdf

Transforming a general cubic elliptic cu ...

数学中最著名的曲线和曲面分别是什么? - 刘醉白的回答 - 知乎
https://www.zhihu.com/question/23697239/answer/2961227001

这个带图片的回答,似乎还不错!
QQ截图20230403080704.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-4-3 14:43:29 | 显示全部楼层
nyy 发表于 2023-4-3 08:08
数学中最著名的曲线和曲面分别是什么? - 刘醉白的回答 - 知乎
https://www.zhihu.com/question/2369723 ...
  1. Clear["Global`*"];(*删除所有变量*)
  2. (*通分,合并同类项,取得分子*)
  3. f=a/(b+c)+b/(a+c)+c/(a+b)-4//Together//Numerator
  4. (*找到适合方程的整数解*)
  5. Do[If[f==0&&And[a+b!=0,b+c!=0,c+a!=0],Print[{a,b,c}]],{a,-12,12},{b,-12,12},{c,-12,12}]
复制代码


先找部分整数解
  1. {-11,-9,5}
  2. {-11,-4,1}
  3. {-11,1,-4}
  4. {-11,5,-9}
  5. {-9,-11,5}
  6. {-9,5,-11}
  7. {-5,9,11}
  8. {-5,11,9}
  9. {-4,-11,1}
  10. {-4,1,-11}
  11. {-1,4,11}
  12. {-1,11,4}
  13. {1,-11,-4}
  14. {1,-4,-11}
  15. {4,-1,11}
  16. {4,11,-1}
  17. {5,-11,-9}
  18. {5,-9,-11}
  19. {9,-5,11}
  20. {9,11,-5}
  21. {11,-5,9}
  22. {11,-1,4}
  23. {11,4,-1}
  24. {11,9,-5}
复制代码

先搞部分解再说,这只是一小步!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-4-3 15:10:41 | 显示全部楼层
https://link.zhihu.com/?target=h ... I_43_from29to41.pdf

看不懂

An unusual cubic representation problem

但是转发过来,希望有人能看懂

补充内容 (2023-4-4 09:27):
https://ami.uni-eszterhazy.hu/up ... I_43_from29to41.pdf
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-4-6 10:57:39 | 显示全部楼层
nyy 发表于 2023-4-3 15:10
https://link.zhihu.com/?target=http%3A//ami.ektf.hu/uploads/papers/finalpdf/AMI_43_from29to41.pdf

...
The general procedure to transform a genus one cubic projective curve into Weierstrass form is outlined in the book by Silverman/Tate "Rational points on elliptic curves", Chapter I, Section 3, pages 22-23.

Some software packages can do this for you, for instance, Magma. There is an online Magma calculator http://magma.maths.usyd.edu.au/calc/ which is free to use as long as the calculation does not go over 120 seconds. Here is some code that verifies the equations in the paper.

F<N>:=FunctionField(Rationals());
PS<a,b,c>:=ProjectiveSpace(F,2);
C:=Curve(PS, N*(a+b)*(b+c)*(c+a)-a*(a+b)*(a+c)-b*(b+c)*(b+a)-c*(c+a)*(c+b));
P0:=C![1,-1,0];
F, CtoF:=EllipticCurve(C,P0);
E<X,Y,Z>:=EllipticCurve([0, 4*N^2+12*N-3, 0, 32*(N+3), 0]);
test,FtoE:=IsIsomorphic(F,E);
assert test eq true;
CtoE:=Expand(CtoF*FtoE);
CtoE;

Good wishes,
Andrew Bremner


这个作者给我的回信!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-21 20:38 , Processed in 0.024731 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表