找回密码
 欢迎注册
查看: 3245|回复: 5

[转载] 有无穷多伪素数的证明

[复制链接]
发表于 2022-10-14 14:06:31 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
https://primes.utm.edu/notes/proofs/a_pseudoprimes.html

Let a > 1 be an integer. Recall that Fermat's (little) theorem shows that if p does not divide a, then ap-1 ≡ 1 (mod p).  m is a probable-prime base a (an a-PRP) if am-1 ≡ 1 (mod m).  "Most" such numbers m are prime, but if they are not, they are called pseudo-primes base a.  The purpose of this note is to prove the following:

Theorem:
Let a be any integer greater than one.  There is an infinite number of pseudoprimes with respect to the base a.
Proof: We will follow Ribenboim [HW79 p72].
Choose any prime p which does not divide a(a2-1) (this condition can be weakened to p which does not divide a2-1, see [CP2001 thm 3.3.4]) and then define

m = (a2p-1)/(a2-1).

m is divisible by (ap-1)/(a-1), so m is composite.  Also this m is different for each choice of p, so we need only show m is an a-PRP to complete the proof.

Rewrite the expression for m above:

(a2-1)(m-1) = a(ap-1-1)(ap+a).

Clearly the rightmost term is even and a2-1 divides ap-1-1 (as p-1 is even).  Also, Fermat's theorem tells us that ap-1-1 is divisible by p, so

2p(a2-1) divides (a2-1)(m-1)

or just 2p divides m-1.  Finally, by the definition of m we have a2p = 1 + m(a2-1) or just a2p ≡ 1 (mod m).  It follows that am-1 is also one modulo m, completing the proof.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2022-10-20 16:20:07 | 显示全部楼层
如果n是基2伪素数,则2^n-1也是,因此无限
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-10-21 15:51:31 | 显示全部楼层
无心人 发表于 2022-10-20 16:20
如果n是基2伪素数,则2^n-1也是,因此无限

那基3呢???????
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-4-24 15:56:00 | 显示全部楼层
nyy 发表于 2022-10-21 15:51
那基3呢???????

如果p是素数,n=(3^p-1)/2要么是素数,要么是基3伪素数

点评

甚至11^2还是基3强伪素数  发表于 2023-4-24 15:58
甚至11^2就是基3伪素数,可比2的两个平方伪素数小多了  发表于 2023-4-24 15:56
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-21 21:04 , Processed in 0.022959 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表