找回密码
 欢迎注册
楼主: 笨笨

[求助] 用mma怎么编程

[复制链接]
发表于 2023-1-15 09:14:15 | 显示全部楼层
uk702 发表于 2023-1-14 17:02
3# 的方法就是大招。更进一步,似有
\[
a_n = \frac{2}{n} + \frac{2 Log[n]}{3 n^2} + \frac{2 Log[n]^ ...

I am very sorry! #7 楼的结果没能通过实际数据检验。


  1. n = 100000;
  2. a = 1.0`100; For[i = 0, i < n, a = Log[1 + a]; i++]; a1000000 = a; Print[N[u, 100]];
  3. f[n_] := 2/n + (2/3 Log[n] - c1)/(n^2); Solve[f[n] == a]
  4. g[n_] := 2/n + (2/3 Log[n] - c2)/(n^2) + (2 Log[n] Log[n] - 2 Log[n])/(9 n^3); Solve[g[n] == a]
  5. 解得
  6. c1 = 4.513881773021752...
  7. c2 = 4.514150738637968...

  8. n = 1000000;
  9. a = 1.0`100; For[i = 0, i < n, a = Log[1 + a]; i++]; a1000000 = a; Print[N[u, 100]];
  10. f[n_] := 2/n + (2/3 Log[n] - c1)/(n^2); Solve[f[n] == a]
  11. g[n_] := 2/n + (2/3 Log[n] - c2)/(n^2) + (2 Log[n] Log[n] - 2 Log[n])/(9 n^3); Solve[g[n] == a]
  12. 解得
  13. c1 = 4.5139127439173691673462937...
  14. c2 = 4.513952088988795669136132843492
复制代码


故(猜想)
\[
a_n = \frac{2}{n} + \frac{2/3 Log[n] - c}{n^2}  + o(n^{-2})
\]

其中 c 是一个与 \( a_1 \) 相关的常数,当  \( a_1 = 1 \)  时,\( c = 4.513... \)

点评

题目的极限为 2/3 应该没有错,现在推导的是更精细的逼近公式。  发表于 2023-1-15 09:48
2/3  发表于 2023-1-15 09:34
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-1-15 09:18:40 | 显示全部楼层
根据3#的思想,得到$n->\infty,  a(n)->2\sum _{k=1}^{\infty } \frac{1}{2 k-1} (\frac{1}{n})^{2 k-1}= 2 \tanh ^{-1}(\frac{1}{n})$,  也就是原题极限为0.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2023-1-15 09:33:08 | 显示全部楼层
wayne 发表于 2023-1-15 09:18
根据3#的思想,得到$n->\infty,  a(n)->2\sum _{k=1}^{\infty } \frac{1}{2 k-1} (\frac{1}{n})^{2 k-1}= 2 ...

你好,原极限结果等于2/3,2楼的程序可否能改进一下
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-1-15 10:22:43 | 显示全部楼层
本帖最后由 uk702 于 2023-1-15 10:40 编辑

\[
a_n = \frac{2}{n} + \frac{2/3 Log[n] - c}{n^2} + \frac{ 2/9 Log[n]^2 - 2(1 + 3 c)/ 9 Log[n] + (2 + 6 c + 9 c^2)/18}{n^3}
\]

  1. n = 100000;
  2. a = 1.0`100; For[i = 0, i < n, a = Log[1 + a]; i++]; Print[N[a, 100]];
  3. h[n_] = 2/n + (2/3 Log[n] - c) / n^2 + ( 2/9 Log[n]^2 - 2(1 + 3 c)/ 9 Log[n] + (2 + 6 c + 9 c^2)/18 ) / n^3;
  4. Solve[h[n] == a]
  5. 解得 c = 4.513922317288945344462772324200553...

  6. n = 1000000;
  7. a = 1.0`100; For[i = 0, i < n, a = Log[1 + a]; i++]; Print[N[a, 100]];
  8. h[n_] = 2/n + (2/3 Log[n] - c) / n^2 + ( 2/9 Log[n]^2 - 2(1 + 3 c)/ 9 Log[n] + (2 + 6 c + 9 c^2)/18 ) / n^3;
  9. Solve[h[n] == a]
  10. 解得 c = 4.5139223177270656672830726730444912910404826975...

  11. n = 10000000;
  12. a = 1.0`100; For[i = 0, i < n, a = Log[1 + a]; i++]; Print[N[a, 100]];
  13. h[n_] = 2/n + (2/3 Log[n] - c) / n^2 + ( 2/9 Log[n]^2 - 2(1 + 3 c)/ 9 Log[n] + (2 + 6 c + 9 c^2)/18 ) / n^3;
  14. Solve[h[n] == a]
  15. 解得 c = 4.51392231774456470363880866511722354631999512440581836558125598...
  16. 这时  a = 2.0000006231476527853498662133367261421598872948834435881757796... *10^-7
  17.   h[n] = 2.00000062314765278534986621333672614215988729488344358817577963496395 *10^-7

复制代码


注意到 h[n] == a,上面的结果其实没有意义,要考察的是 c 对不同的 n 的稳定性,由于 c 的精度超过了 1/n,介于 1/n 和  1/n^2 之间,故判断上述公式给出的 1/n^3 的系数正确,而 (未给出的) 1/n^4 的系数可能较大。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 06:00 , Processed in 0.025309 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表