找回密码
 欢迎注册
查看: 37609|回复: 5

[求助] 奥赛练习题,分解因式(有理域)

[复制链接]
发表于 2008-2-29 12:00:01 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
请教,如何在有理域分解如下因式: $x^8 - x^7y + x^6y^2 - x^5y^3 + x^4y^4 - x^3y^5 + x^2y^6 - xy^7 + y^8$ 下式是否为最终解答: $(x^2 - xy + y^2)(x^6 - x^3y^3 + y^6)$ 谢谢。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-2-29 13:03:16 | 显示全部楼层
有理域是不可继续分解了。 其实就是判断 $(x^6-x^3+1)$ 在有理域是否还可以分解。 如果逐一试探,就可以知道上面没有二次和三次的整系数因式了。 不过我记得竞赛中经常会使用一个好像叫做爱森斯坦判别式的定理,只是不记得定理具体内容了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-3-2 10:12:59 | 显示全部楼层
谢谢版主解答,可惜查不到“爱森斯坦判别式”的资料。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-3-4 13:59:35 | 显示全部楼层
TAOCP 2上有算法 就是在F(P)上分解, 然后通过结果寻找Q上的分解
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-3-4 14:19:21 | 显示全部楼层
你这是用计算机解数学题 找到我上面说的判别方法了: http://mathworld.wolfram.com/Eis ... ilityCriterion.html 也就是说如果对于多项式 $a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ 如果存在素数$p$整除$a_{n-1},a_{n-2},...,a_0$而且$p$不整除$a_n$,并且$p^2$不整除$a_0$ 那么这个多项式在有理数域上不可约。 对于多项式$x^6-x^3+1$ 我们可以取$x=-y-1$代入 多项式变成 $y^6+6y^5+15y^4+21y^3+18y^2+9y+3$ 正好满足Eisenstein准则中取p=3的情况,所以这个多项式在有理数域不可约。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-3-8 20:37:22 | 显示全部楼层
真是太感谢版主啦!好像有些多项式在有理数域不可约,不能用Eisenstein准则判定,即存在例外。 不能用Eisenstein判别法判别的不可约多项式 Irreducible Polynomials Which Can Not Be Judged by Eisentein′s Irreducibilty Criterion <<徐州师范大学学报(自然科学版)>>2001年02期 朱一心 整系数多项式因式分解的一种新方法 A New Way of Factorization of Polynomial for Integral Coefficient Polynomial <<数学的实践与认识>>2005年01期 蒋忠樟,JIANG Zhong-zhang 利用整系数多项式与正有理数的对应,将多项式因式分解通过对真分数序列筛选的办法求得因式,给出了整系数多项式因式分解的一种新方法。 可惜不能看到全文。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-4 17:02 , Processed in 0.024895 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表