马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
在素数中,存在任意长的等差数列,这叫什么定理来着?
先不管了,在此,我关注的是这样的素数数列,不仅等差,而且数列中的每一个元素都是由相同的几个数组成。
先拣软的捏:
元素是三位数的不存在。
元素是四位数的有{1487, 4817, 8147}, {2969, 6299, 9629}
而五位数的有{{18503, 51803, 85103}, {80191, 89101, 98011}, {12713, 13217, 13721}, {11483, 14813, 18143}, {14831, 31481, 48131}, {11497, 41719,71941}, {12739, 17239, 21739}, {25913, 39521, 53129}, {12757, 17257, 21757}, {25981, 59281, 92581}, {20161, 20611, 21061}, {26317,31267, 36217}, {12799, 17299, 21799}, {14821, 48121, 81421}, {92381, 92831, 93281}, {34961, 39461, 43961}, {35671, 53617,71563}, {37561, 51637, 65713}, {68713, 78163, 87613}, {18593, 51893, 85193}, {31489, 34819, 38149}, {31489, 39841, 48193}, {19543,35491, 51439}, {35491, 39541, 43591}, {71947, 74719, 77491}, {61487, 64817, 68147}, {14897, 47189, 79481}, {78941, 84179,89417}, {76819, 81769, 86719}, {20353, 25303, 30253}, {20359, 25309, 30259}, {20747, 24077, 27407}, {25087, 52807, 80527}, {62773,67723, 72673}, {23887, 28387, 32887}, {28933, 29383, 29833}, {25793, 59273, 92753}, {26597, 59627, 92657}, {62597, 65927,69257}, {32969, 63299, 93629}, {29669, 62969, 96269}, {67829, 68279, 68729}, {60373, 63703, 67033}, {35407, 40357, 45307}, {73589,78593, 83597}, {63499, 63949, 64399}, {49547, 54497, 59447}, {60757, 65707, 70657}, {55603, 56053, 56503}, {76717, 77167,
77617},{89387, 93887, 98387}}
还有一个四元集的:{83987, 88937, 93887, 98837}
六位数有828组
。。。
那么,10位数的有多少组呢?
再难点,k位数构成的这样的特殊的素数等差数列 中数列的元素N最多能取到多少呢(即数列最长能取到多少)?
k=3,N=0
k=4,N=3
k=5,N=4
..... |