找回密码
 欢迎注册
查看: 13509|回复: 5

[原创] 勾股数与一类pell方程最小解的统一公式

[复制链接]
发表于 2011-3-14 21:30:31 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
设a=m^2-n^2 b=2mn,c=m^2+n^2 如果有ay - bx=-1 (a*k+x)^2+(b*k+y)^2=c^2*k^2+2k(ax+by)+(x^2+y^2)=D 利用关系式得Pell方程 (c^2*k+(ax+by))^2 - D*c^2= -1 例如,令a=5,b=12,c=13,得x=3,y=7 D=169k^2+198k+58.便得一类Pell方程 (169k+99)^2-D*13^2=-1,已知同一类Pell方程具有相同的周期 由于pell方程式中的整数的连分式周期与因子分解密切相关,希望大家多对其研究,以上想法源自数学中国中luyuanhong的一片帖子《整数平方根的连分数表示中的规律》大家可搜索
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2011-3-15 11:09:27 | 显示全部楼层
每个k仅对应一个D,这不过构造一个特解,而不是通解。而且D依赖于k,而不具有一般性。另外计算过程怎么感觉也有点问题
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-3-15 18:24:46 | 显示全部楼层
通过对实例的研究,发现若x^2-d*y^2=-1 如果y的值相同,则 Sqrt(d)=[a0;a1,a2, … ,2a0]中只有a0, 2a0不同外,中间的值都相同。例如,取 D=169k^2 - 2*99k+58 k=1,2,25时分别有 Sqrt(29)=[5;2,1,1,2,10] Sqrt(338)=[18;2,1,1,2,36] Sqrt(100733)=[317;2,1,1,2,634] D=169k^2+2*99k+58 k=1,2,25时,分别有 Sqrt(425)=[20;1,1,1,1,1,1,40] Sqrt(1130)=[33;1,1,1,1,1,1,66] Sqrt(110633)=[332;1,1,1,1,1,1,664] 不知是否只有这两种结构。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-3-17 20:12:46 | 显示全部楼层
发现了更具一般的类 Pell方程的通解表达式 设x^2 - d*y^2=-1 D=(yk)^2 + 2x*k +d则有(y^2*k + x) - D*y^2=-1 k也可取负值,但是其展开式是另外一种结构。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-3-18 09:31:55 | 显示全部楼层

A

由连分式基本知识可以推得若 x^2 - dy^2=-1有解 则y一定可以写成两平方和的形式
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2011-3-21 10:42:56 | 显示全部楼层

由pell方程可知,许多具有y相同解的值在同一个类当中,那么我们就要问给定任意一个D.它是否是同一类中最小的d.下面的方法能判断并给出最小d值, 设(x,y)满足pell方程的最小解,并记 x=s( mod y). A=Int(sqrt(D)) Q=D-A^2 则有 A0=A( mod y) Q0=Q( mod 2s) d=(A0)^2+Q0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-1 07:54 , Processed in 0.025748 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表