找回密码
 欢迎注册
查看: 9958|回复: 6

[分享] 本来想再发个幻方的帖子的,发现GxQ的主页很详细,所以做下补充

[复制链接]
发表于 2008-4-6 10:08:16 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
富兰克林幻圆 (图片数据缺失)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-4-6 10:10:30 | 显示全部楼层
另外感觉国外对国内的工作知道的很少 你们需要再努力啊
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-4-6 10:23:18 | 显示全部楼层
缺少有效的交流沟通渠道。 又由于幻方的应用领域一直尚待开发,所以并不热宠。 且还由于易陷入版权之争(从一个幻方变换到另一个是很容易的), 所以我才决定暂时终止该方面的研究,转而进入高精度计算领域, 其实,高精计算是伴随幻方研究早就开始了,为计算双料幻方的定积不得不进行高精计算。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-4-6 10:43:30 | 显示全部楼层
幻六边形 magic6.jpg 考虑该类型幻形阶数n, 数字个数m n = 1, m = 1 n = 2, m = 7 n = 3, m = 19 n = 4, m = 37 m = 3n(n-1) + 1 n阶共2n-1层 则该幻方存在的一个条件是 $(2n-1) | {{m(m + 1)}/2 = {(3n(n-1) + 1)(3n(n-1) + 2)}/2}$ 或者说${(3n^2 -3n + 1)(3n^2 - 3n + 2)}/{2(2n - 1)}$是整数
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-4-6 11:05:23 | 显示全部楼层
对n <= 1000000计算 未发现除了n=1, 3外该式子为整数的情况 再大也没意义了 所以幻六边形估计世界上就一个 haskell程序 let num1000000 = [1..1000000] let test n = mod ((3*n*n - 3*n + 1)*(3*n*n - 3*n + 2)) 2*(2*n-2) let magic6 n = (test n) == 0 filter magic6 num1000000 经过一分钟左右算出[1,3]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-4-6 12:21:53 | 显示全部楼层

还可对判定条件进一步简化

最终可简化为:$(2n-1) | (n^2+1)$ $.: 3n^2 - 3n = (n-1)(2n-1) + n^2 - 1$, $:. (3n^2-3n+1)(3n^2-3n+2) -= n^2(n^2+1)\quad(mod(2n-1))$, 又 $gcd(n, 2n-1) = gcd(n,-1) = 1$, 故原式 $<=> (2n-1) | (n^2+1)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-4-6 13:42:28 | 显示全部楼层
可惜结果是否定的 哎
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-24 11:17 , Processed in 0.030556 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表