- 注册时间
- 2009-2-12
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 27231
- 在线时间
- 小时
|
用eclib的工具来搜索,跑了一晚上.找到的点是$[x,y]=[57878913/12642040,5531870046610133823/159821175361600]$, 用到的算法应该是 二次筛法
- cc@Mini:~/mathematics/eclib/progs$ ./quartic_points
- eclib version 20250530, using NTL bigints and NTL real and complex multiprecision floating point
- Verbose? 1
- Enter quartic coefficients a,b,c,d,e ?
- 18422369 -81234596 29670080 102943032 -193447548
- Limit on height? 18
- I = -16797224843002928, J = 19297954620658708000436864
- Minimal model for Jacobian: [0,-1,0,349942184229228,-11167797929528591502588]
- Checking local solublity in R:
- Checking local solublity at primes [ 2 3 17 281 433 3359 3457 4337 4993 ]:
- new_qpsoluble with p<1000 passing to old qpsoluble.
- new_qpsoluble with p<1000 passing to old qpsoluble.
- new_qpsoluble with p<1000 passing to old qpsoluble.
- new_qpsoluble with p<1000 passing to old qpsoluble.
- Using new_qpsoluble with p = 3359
- ---------------------------------------------
- LOCAL_SOL
- -193447548 102943032 29670080 -81234596 18422369 p=3359
- f is not 0 mod p: Case I
- Factorization of f = [[[717 1] 1] [[922 1] 1] [[1636 1] 2]]
- Using new_qpsoluble with p = 3457
- ---------------------------------------------
- LOCAL_SOL
- -193447548 102943032 29670080 -81234596 18422369 p=3457
- f is not 0 mod p: Case I
- Using new_qpsoluble with p = 4337
- ---------------------------------------------
- LOCAL_SOL
- -193447548 102943032 29670080 -81234596 18422369 p=4337
- f is not 0 mod p: Case I
- Using new_qpsoluble with p = 4993
- ---------------------------------------------
- LOCAL_SOL
- -193447548 102943032 29670080 -81234596 18422369 p=4993
- f is not 0 mod p: Case I
- Factorization of f = [[[370 523 1] 1] [[1371 1] 2]]
- Everywhere locally soluble.
- Searching for points on (18422369,-81234596,29670080,102943032,-193447548) up to height 18
- Entering qsieve::search: y^2 = 18422369x^4 + -81234596x^3 + 29670080x^2 + 102943032x^1 + -193447548
- Using speed ratios 1000 and 6.5
- 8 primes used for first stage of sieving
- 52 primes used for both stages of sieving together.
- Sieving primes:
- First stage: 13, 31, 53, 107, 29, 179, 67, 229,
- Second stage: 191, 211, 109, 103, 239, 227, 149, 137, 181, 173, 157, 83, 241, 79, 199, 163, 73, 251, 61, 5, 131, 59, 223, 113, 233, 193, 167, 139, 101, 151, 127, 41, 197, 47, 97, 37, 89, 71, 23, 43, 3, 11, 19, 7,
- Probabilities: Min(13) = 0.3609467456, Cut1(229) = 0.4541484716, Cut2(7) = 0.7551020408, Max(17) = 1
- Forbidden divisors of the denominator:
- 3, 49, 29, 31, 37, 41, 43, 59, 71, 79, 107, 113, 127, 137, 151, 163, 181, 191, 193, 197, 199, 227, 229, 241, 251,
- Try to find the points up to height 65659969
- x = 57878913/12642040 gives a rational point.
- (x:y:z) = (57878913:5531870046610133823:12642040)
- Point = [501719473680977804952504580457666799500891138875111852557260236:4561260782270963696842009762159238536332935102669773182469489577190:6269777709190453801465699995883947113443032275408248621]
- height = 83.99200507
- Curve = [0,-1,0,349942184229228,-11167797929528591502588]
- Point = [501719473680977804952504580457666799500891138875111852557260236:4561260782270963696842009762159238536332935102669773182469489577190:6269777709190453801465699995883947113443032275408248621]
- height = 83.99200507
- Enter quartic coefficients a,b,c,d,e ?
复制代码 |
|