找回密码
 欢迎注册
查看: 101|回复: 1

[讨论] 如何找到一般双四次曲线的有理点

[复制链接]
发表于 6 天前 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
如何找到 $y^2=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0$的有理点, 已知$a_i$是整数,且$a_0,a_4$都不是完全平方数.
如果$a_0$或者$a_4$是完全平方数的话,可以双有理变换到$y^2=x^3+a_2x^2+a_1x+a_0$,网上很容易搜得到方法.


咱们就拿$y^2=18422369 x^4-81234596 x^3+29670080 x^2+102943032 x-193447548$ 练练手, 可以确定存在有理数点.
这个曲线是: $w^2=f(u,v)=u^4 v^4-4 u^4 v^3-8 u^4 v+4 u^4-4 u^3 v^4+8 u^3 v^3-16 u^3 v^2+48 u^3 v-16 u^3-16 u^2 v^3+48 u^2 v^2-64 u^2 v-8 u v^4+48 u v^3-64 u v^2+32 u v+32 u+4 v^4-16 v^3+32 v-48$
在$u=-5/44$化简而来
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 4 天前 | 显示全部楼层
用eclib的工具来搜索,跑了一晚上.找到的点是$[x,y]=[57878913/12642040,5531870046610133823/159821175361600]$, 用到的算法应该是 二次筛法

  1. cc@Mini:~/mathematics/eclib/progs$ ./quartic_points
  2. eclib version 20250530, using NTL bigints and NTL real and complex multiprecision floating point
  3. Verbose? 1
  4. Enter quartic coefficients a,b,c,d,e ?
  5. 18422369 -81234596 29670080 102943032 -193447548
  6. Limit on height? 18
  7. I = -16797224843002928, J = 19297954620658708000436864
  8. Minimal model for Jacobian: [0,-1,0,349942184229228,-11167797929528591502588]
  9. Checking local solublity in R:
  10. Checking local solublity at primes [ 2 3 17 281 433 3359 3457 4337 4993 ]:
  11. new_qpsoluble with p<1000 passing to old qpsoluble.
  12. new_qpsoluble with p<1000 passing to old qpsoluble.
  13. new_qpsoluble with p<1000 passing to old qpsoluble.
  14. new_qpsoluble with p<1000 passing to old qpsoluble.
  15. Using new_qpsoluble with p = 3359
  16. ---------------------------------------------
  17. LOCAL_SOL
  18. -193447548 102943032 29670080 -81234596 18422369      p=3359
  19. f is not 0 mod p: Case I
  20. Factorization of f = [[[717 1] 1] [[922 1] 1] [[1636 1] 2]]
  21. Using new_qpsoluble with p = 3457
  22. ---------------------------------------------
  23. LOCAL_SOL
  24. -193447548 102943032 29670080 -81234596 18422369      p=3457
  25. f is not 0 mod p: Case I
  26. Using new_qpsoluble with p = 4337
  27. ---------------------------------------------
  28. LOCAL_SOL
  29. -193447548 102943032 29670080 -81234596 18422369      p=4337
  30. f is not 0 mod p: Case I
  31. Using new_qpsoluble with p = 4993
  32. ---------------------------------------------
  33. LOCAL_SOL
  34. -193447548 102943032 29670080 -81234596 18422369      p=4993
  35. f is not 0 mod p: Case I
  36. Factorization of f = [[[370 523 1] 1] [[1371 1] 2]]
  37. Everywhere locally soluble.
  38. Searching for points on (18422369,-81234596,29670080,102943032,-193447548) up to height 18
  39. Entering qsieve::search: y^2 = 18422369x^4 + -81234596x^3 + 29670080x^2 + 102943032x^1 + -193447548
  40. Using speed ratios 1000 and 6.5
  41. 8 primes used for first stage of sieving
  42. 52 primes used for both stages of sieving together.
  43. Sieving primes:
  44. First stage: 13, 31, 53, 107, 29, 179, 67, 229,
  45. Second stage: 191, 211, 109, 103, 239, 227, 149, 137, 181, 173, 157, 83, 241, 79, 199, 163, 73, 251, 61, 5, 131, 59, 223, 113, 233, 193, 167, 139, 101, 151, 127, 41, 197, 47, 97, 37, 89, 71, 23, 43, 3, 11, 19, 7,
  46. Probabilities: Min(13) = 0.3609467456, Cut1(229) = 0.4541484716, Cut2(7) = 0.7551020408, Max(17) = 1

  47. Forbidden divisors of the denominator:
  48. 3, 49, 29, 31, 37, 41, 43, 59, 71, 79, 107, 113, 127, 137, 151, 163, 181, 191, 193, 197, 199, 227, 229, 241, 251,

  49. Try to find the points up to height 65659969
  50. x = 57878913/12642040 gives a rational point.
  51. (x:y:z) = (57878913:5531870046610133823:12642040)
  52. Point = [501719473680977804952504580457666799500891138875111852557260236:4561260782270963696842009762159238536332935102669773182469489577190:6269777709190453801465699995883947113443032275408248621]
  53.         height = 83.99200507
  54. Curve = [0,-1,0,349942184229228,-11167797929528591502588]
  55. Point = [501719473680977804952504580457666799500891138875111852557260236:4561260782270963696842009762159238536332935102669773182469489577190:6269777709190453801465699995883947113443032275408248621]
  56. height = 83.99200507
  57. Enter quartic coefficients a,b,c,d,e ?
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-8-8 17:02 , Processed in 0.023043 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表