找回密码
 欢迎注册
查看: 47|回复: 10

[讨论] a^2+b^2+c^2=d^2(0<a<b<c<d) 恰好有44组正整数解

[复制链接]
发表于 昨天 07:46 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
A374805
a(n) is the smallest positive integer whose square can be represented as the sum of 3 distinct nonzero squares in exactly n ways, or -1 if no such number exists.

1, 7, 15, 23, 31, 21, 33, 39, 49, 45, 79, 57, 95, 103, 75, 69, 127, 87, 63, 151, 93, 167, 111, 123, 99, 187, 117, 105, 161, 241, 141, 135, 153, 247, 271, 283, 177, 183, 165, 275, 147, 171, 323, 219

若 $a^2+b^2+c^2=d^2(0<a<b<c<d)$ 恰好有44组正整数解,求最小d值。已知d<15000内无解,如何证明不存在这样的d呢?

  1. a[n_] :=NestWhile[# + 1 &, 1,Length@Select[PowersRepresentations[#^2, 3, 2],0 < #[[1]] < #[[2]] < #[[3]] &] != n &];
  2. Range[20] // Map[{#, a[#]} &] // Column
复制代码


{1,7}
{2,15}
{3,23}
{4,31}
{5,21}
{6,33}
{7,39}
{8,49}
{9,45}
{10,79}
{11,57}
{12,95}
{13,103}
{14,75}
{15,69}
{16,127}
{17,87}
{18,63}
{19,151}
{20,93}



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 昨天 07:51 | 显示全部楼层
遍历发现,15000以内,有38个数字无解:
{38,{44,78,174,183,205,210,282,295,330,372,384,404,434,460,468,479,480,509,582,624,652,670,674,678,709,744,745,750,759,782,804,810,839,866,867,897,953,999}}

点评

19000以内,依然是这38个数字无解  发表于 昨天 11:14
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 昨天 11:11 | 显示全部楼层
突然发现,a^2+b^2+c^2=d^2(0<a<b<c<d) 若仅有唯一正整数解,则d=7 或d={9, 11, 13, 14, 17}的$2^k(k >=0)$倍.

{7,9,11,13,14,17,18,22,26,28,34,36,44,52,56,68,72,88,104,112,136,144,176,208,224,272,288,352,416,448,544,576,704,832,896,1088,1152,1408,1664,1792,2176,2304,2816,3328,3584,4352,4608,5632,6656,7168,8704,9216,11264,13312,14336,17408,18432}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 昨天 11:14 | 显示全部楼层
A004432
Numbers that are the sum of 3 distinct nonzero squares.

14, 21, 26, 29, 30, 35, 38, 41, 42, 45, 46, 49, 50, 53, 54, 56, 59, 61, 62, 65, 66, 69, 70, 74, 75, 77, 78, 81, 83, 84, 86, 89, 90, 91, 93, 94, 98, 101, 104, 105, 106, 107, 109, 110, 113, 114, 115, 116, 117, 118, 120, 121, 122, 125, 126, 129, 131, 133
(list; graph; refs; listen; history; edit; text; internal format)
OFFSET
1,1
COMMENTS
Numbers that can be written as a(n) = x^2 + y^2 + z^2 with 0 < x < y < z.
This is a subsequence (equal to the range) of A024803. As a set, it is the union of A025339 and A024804, subsequences of numbers having exactly one, resp. more than one, such representations. - M. F. Hasler, Jan 25 2013
Conjecture: a number n is a sum of 3 squares, but not a sum of 3 distinct nonzero squares (i.e., is in A004432 but not A000408), if and only if it is of the form 4^j*s, where j >= 0 and s in {1, 2, 3, 5, 6, 9, 10, 11, 13, 17, 18, 19, 22, 25, 27, 33, 34, 37, 43, 51, 57, 58, 67, 73, 82, 85, 97, 99, 102, 123, 130, 163, 177, 187, 193, 267, 627, 697}. - Jeffrey Shallit, Jan 15 2017
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 昨天 15:17 | 显示全部楼层
如果是本原解,gcd(a,b,c,d)=1,那么是这个数列 https://oeis.org/A097266

点评

不要求本原解  发表于 昨天 15:35
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 昨天 21:09 | 显示全部楼层
我觉得 题目  要么 改成 统计 本原解$GCD(a,b,c)=1,0<d$的个数,  要么统计 $0<a<=b<=c , 0<d$ 非零解 的个数 比较合适.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 昨天 21:28 | 显示全部楼层
我是奇怪 A004432 为什么算到43就不继续了
Numbers that are the sum of 3 distinct nonzero squares.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 昨天 21:32 | 显示全部楼层
$324^2=x^2 + y^2 + z^2 with 0 < x < y < z$ 有18组解
{{4,112,304},{4,176,272},{24,84,312},{24,120,300},{24,168,276},{32,64,316},{32,196,256},{36,144,288},{64,92,304},{64,164,272},{64,188,256},{80,176,260},{80,220,224},{84,168,264},{92,176,256},{112,164,256},{128,196,224},{160,176,220}}

$1156^2=x^2 + y^2 + z^2 with 0 < x < y < z$ 有34组解
{{4,96,1152},{4,768,864},{68,336,1104},{96,612,976},{96,688,924},{112,324,1104},{112,576,996},{156,240,1120},{156,480,1040},{156,544,1008},{156,752,864},{176,336,1092},{176,672,924},{192,284,1104},{192,796,816},{228,256,1104},{228,576,976},{240,444,1040},{256,480,1020},{256,528,996},{284,768,816},{324,464,1008},{324,528,976},{324,752,816},{336,608,924},{336,768,796},{432,444,976},{432,544,924},{444,688,816},{464,612,864},{480,544,900},{508,576,864},{544,612,816},{576,644,768}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 昨天 21:48 | 显示全部楼层
northwolves 发表于 2025-10-4 07:51
遍历发现,15000以内,有38个数字无解:
{38,{44,78,174,183,205,210,282,295,330,372,384,404,434,460,468 ...

根据我这个数据, https://oeis.org/A097266.  应该是 无解了./
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-10-5 04:25 , Processed in 0.036329 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表