- 注册时间
- 2014-1-19
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 4905
- 在线时间
- 小时
|
楼主 |
发表于 2019-3-25 22:12:15
|
显示全部楼层
本帖最后由 葡萄糖 于 2019-3-26 08:10 编辑
先不考虑\(\,A\,\),\(\,B\,\),\(\,C\,\),\(\,D\,\)的差异
先考虑每行每列有且仅有一个\(\,1\,\)的\(\,4\times4\,\)二进制方阵;
若考虑旋转等价(http://oeis.org/A263685),那么这样的二进制方阵有9个:
\begin{align*}
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
&&
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
&&
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
&&
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
&&
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}\\
&&
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
&&
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
&&
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
&&
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\end{align*}
- e = Identity;
- f = Reverse;
- g = Transpose;
- Grot = {e, f@*g, g@*f, f@*g@*f@*g};
- MatrixPlot[#, ImageSize -> Tiny, ColorFunction -> "Monochrome"] & /@
- DeleteDuplicates[
- SparseArray@Thread[Transpose[{Range[4], #}] -> 1] & /@
- Permutations@Range[4], MemberQ[Through@Grot[#1], #2] &]
复制代码
若考虑旋转翻转等价(http://oeis.org/A000903),那么这样的二进制方阵有7个:
\begin{align*}
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
&&
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
&&
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
&&
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\\
&&
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
&&
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
&&
\overset{\Large\overset{\huge\overset{\huge{\square}}{\blacksquare}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\square}}{\blacksquare}
\overset{\Large\overset{\huge\overset{\huge{\blacksquare}}{\square}}{\square}}{\square}
\overset{\Large\overset{\huge\overset{\huge{\square}}{\square}}{\blacksquare}}{\square}
\end{align*}
- e = Identity;
- f = Reverse;
- g = Transpose;
- Grotflip = {e, f, g, f@*g, g@*f, f@*g@*f, g@*f@*g, f@*g@*f@*g};
- MatrixPlot[#, ImageSize -> Tiny, ColorFunction -> "Monochrome"] & /@
- DeleteDuplicates[
- SparseArray@Thread[Transpose[{Range[4], #}] -> 1] & /@
- Permutations@Range[4], MemberQ[Through@Grotflip[#1], #2] &]
复制代码
|
|