- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
楼主 |
发表于 2015-8-7 21:20:47
|
显示全部楼层
对于\(N=5\)边形
\(\alpha+\beta+A=\pi, \beta+\gamma+B=\pi, \gamma+\delta+C=\pi, \delta+\mu+D=\pi, \mu+\alpha+E=\pi\)
\(\mu=A+C-\pi, \alpha=B+D-\pi, \beta=C+E-\pi, \delta=B+E-\pi, \gamma=A+D-\pi\)
\(\frac{\sin(\alpha)}{\sin(\beta)}=k_1, \frac{\sin(\beta)}{\sin(\gamma)}=k_2, \frac{\sin(\gamma)}{\sin(\delta)}=k_3, \frac{\sin(\delta)}{\sin(\mu)}=k_4, \frac{\sin(\mu)}{\sin(\alpha)}=k_5\)
\(\frac{a_1}{e_2}=k_1, \frac{b_1}{a_2} =k_2, \frac{c_1}{b_2}=k_3, \frac{d_1}{c_2}=k_4, \frac{e_1}{d_2}=k_5\)
\(a_1+a_2=a, b_1+b_2=b, c_1+c_2=c, d_1+d_2=d, e_1+e_2=e\)
\(a_1 =\frac{k_1(ak_2k_3k_4k_5-bk_3k_4k_5+ck_4k_5-dk_5+e)}{k_1k_2k_3k_4k_5+1}\)
\(a_2=\frac{bk_1k_3k_4k_5-ck_1k_4k_5+dk_1k_5-ek_1+a}{k_1k_2k_3k_4k_5+1}\)
\(b_1=\frac{k_2(bk_1k_3k_4k_5-ck_1k_4k_5+dk_1k_5-ek_1+a)}{k_1k_2k_3k_4k_5+1}\)
\(b_2=\frac{-(-ck_1k_2k_4k_5+dk_1k_2k_5-ek_1k_2+ak_2-b)}{k_1k_2k_3k_4k_5+1}\)
\(c_1=\frac{-k_3(-ck_1k_2k_4k_5+dk_1k_2k_5-ek_1k_2+ak_2-b)}{k_1k_2k_3k_4k_5+1}\)
\(c_2=\frac{dk_1k_2k_3k_5-ek_1k_2k_3+ak_2k_3-bk_3+c}{k_1k_2k_3k_4k_5+1}\)
\(d_1=\frac{k_4(dk_1k_2k_3k_5-ek_1k_2k_3+ak_2k_3-bk_3+c)}{k_1k_2k_3k_4k_5+1}\)
\(d_2=-\frac{(-ek_1k_2k_3k_4+ak_2k_3k_4-bk_3k_4+ck_4-d)}{k_1k_2k_3k_4k_5+1}\)
\(e_1=-\frac{k_5(-ek_1k_2k_3k_4+ak_2k_3k_4-bk_3k_4+ck_4-d)}{k_1k_2k_3k_4k_5+1}\)
\(e_2=\frac{ak_2k_3k_4k_5-bk_3k_4k_5+ck_4k_5-dk_5+e}{k_1k_2k_3k_4k_5+1}\)
\(L_1^2=a_1^2+e_2^2-2a_1e_2\cos(A), L_2^2=a_2^2+b_1^2-2a_2b_1\cos(B), L_3^2=b_2^2+c_1^2-2b_2c_1\cos(C), L_4^2=d_1^2+c_2^2-2d_1c_2\cos(D), L_5^2=e_1^2+d_2^2-2e_1d_2\cos(E)\)
\(L=L_1+L_2+L_3+L_4+L_5\) |
|